
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2002; 25:1527–1539 (DOI: 10.1002/mma.386)
MOS subject classi�cation: 30 G 35

Cli�ord analytic complete function systems
for unbounded domains

Dejenie A. Lakew1 and John Ryan2; ∗

1Department of Mathematical Sciences and Technology; University of Arkansas at Pine Blu�; Pine Blu�;
Arkansas 71603; U.S.A.

2Department of Mathematical Sciences; University of Arkansas; Fayetteville; Arkansas 72701; U.S.A.

SUMMARY

The main theme of this paper is to construct Cli�ord analytic-complete function systems in the general-
ized Bergman spaces: Bp

Cln
(�) := kerD(�)∩Lp

Cln
(�), and Bp;2

Cln
(�) := ker�(�)∩Lp

Cln
(�). These systems

are used to approximate null solutions of elliptic partial di�erential equations of the Dirac and Laplace
operators over an unbounded domain � in Rn. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Boundary value problems of linear and non-linear partial di�erential equations have long been
studied through the techniques and theory of integro-di�erential operators and approximation
theory. The basic ideas of this paper are motivated by works of G�urlebeck and Spr�o�ig, see
for instance References [1,2]. There a quaternionic calculus in particular and Cli�ord calculus
in general is developed for the treatment of several kinds of boundary value problems by
both analytical and approximation techniques. The domains they work on are bounded and
Liapunov. In this paper, we work on domains which are unbounded and have C2 boundaries,
though our results can be extended to unbounded Liapunov domains, so the boundary would
then be C1 with H�older continuous normal vector.
Cli�ord analysis over unbounded domains has been studied by many authors using di�erent

techniques, see for instance References [3–8,15]. In Reference [4], it is clearly indicated
that a similar function theory can be developed to those developed in References [1,2] over
unbounded domains to study Cli�ord analytic functions. The authors there prove the existence
of a Cauchy transform as well as a Cauchy integral formula in Hardy spaces and H�older
spaces. The problem in passing directly to unbounded domains is that the Cauchy kernel does
not decay fast enough at in�nity. The usual T-transform or Cauchy transform is not absolutely
convergent in the usual function spaces. The function theory developed in References [4,5]
and elsewhere helps to amend this problem. In Reference [4], the amendment is done by
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1528 D. A. LAKEW AND J. RYAN

adding an extra term to the Cauchy kernel. This idea is not new, see for instance Reference
[6]. In Reference [5], the authors �rst assume that the complement of � contains a non-empty
open set and then introduce the following kernel:

�z(x; y)=
1
!n

(
(x − y)
‖x − y‖n − (x − z)

‖x − z‖n
)

where, z is an arbitrary but �xed point lying in an open set in the complement of �.
In this paper, we extend some of the results from References [1,2] to domains which are

unbounded and work in a general Cli�ord analysis setting using the function theory developed
in References [4,5] with this modi�ed kernel. We present a decomposition of a harmonic
function as a sum of a monogenic function and a Cauchy transform of another monogenic
function. We construct Cli�ord analytic-complete function systems in the null spaces of the
di�erential operators which are p integrable over � and get approximation results.

2. PRELIMINARIES

Let Cln denote the real 2n-dimensional Cli�ord algebra generated from Rn under the multipli-
cation rule x2 =−‖x‖2 for each x∈Rn. It should be noted that in this case we are assuming
that Rn is embedded in Cln. Also each non-zero vector x∈Rn has a multiplicative inverse,
−x=‖x‖2. Up to a sign this is the Kelvin inverse of x. If e1; : : : ; en is an orthonormal basis
of Rn, then from the previous multiplication, we have: eiej + ejei=−2�i; je0, for i; j=1; : : : ; n
where �i; j is the Kronecker delta, and e0; =1, is the identity element of the algebra. Thus,
each a∈Cln can be written as

∑
A⊂{1;:::; n} aAeA with real coe�cients aA. Moreover the norm

of an element a can now be de�ned to be ‖a‖=(∑A a
2
A)
1=2.

The function spaces considered in this paper include Sobolev and Slobedeckij spaces.
Let @m denote @r1=@xr11 · · · @rn=@xrnn with r1+ · · ·+rn=m and let �∈C∞(�). Then the support

of �, denoted by supp� is the closure of the set, {x∈�: �(x) �= 0}. Then when � is bounded
C∞
0 (�) := {�∈C∞(Rn): supp� ⊂ K compact ⊂ �}.
De�nition 1
A locally integrable function f de�ned on � has a locally integrable weak or distributional
partial derivative of order r, denoted by @rf if.-∫

�
f(x)@r�(x) dxn=(−1)r

∫
�
@rf(x)�(x) dxn

for all �∈C∞
0 (�).

De�nition 2
The Sobolev space Wp;m(�) for 1¡p¡∞ is de�ned to be the Banach space [{f∈Lp(�):
@mf∈Lp(�)} with norm

‖f‖p;m :=

( ∑
06r6m

‖@rf‖pp
)1=p

The space W 0;p;m(�) is the space {f∈Wp;m(�): tr�f = 0}. Note that Wp;0 = Lp(�).
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When 0¡s �= integer, and 1¡p¡∞, then the function space Wp;s(�) is called a
Slobedeckij space. For detailed information on such spaces, see Reference [9]. The
Slobedeckij spaces are closely related to the investigation of boundary values of functions
which belong to some Sobolev spaces. In our case these spaces are traces or boundary values
of functions from some Sobolev spaces. The trace operator is the one which is continuous
and has the mapping property: tr� :Wp;m(�)→Wp;m−1=p(@�).
The Cli�ord analytic analogue of the Cauchy–Riemann operator is called the Dirac operator

and it is written as D=
∑n

j=1 ej (@=@xj). One may immediately see that the Laplacian in Rn

can be factored as �=−D2. A Cln-valued function f de�ned on � is called left mono-
genic if Df(x)=0 for every x∈� and right monogenic, if fD(x)=0 for every x∈�. Here,
fD=

∑n
j=1(@f=@xj)ej. One may readily deduce that monogenic functions are harmonic. See

Reference [10] for details.
An important example of a function that is both a left and right monogenic function is

given by E(x)= − x=‖x‖n de�ned on Rn\{0} and it is a generalization of the Cauchy kernel
from one variable complex analysis. See Reference [10].
Among the many properties of the Dirac operator D the one which we need most and in fact

which makes Cli�ord analysis more interesting is its right invertibility over Sobolev spaces.
Over a bounded domain � ⊂ Rn, its right inverse is given by the Teodorescu integral operator
commonly known as the T-transform and de�ned by T�(f)(x)=1=!n

∫
� E(x − y)f(y) dyn.

Over unbounded domains it is given by the generalized Teodorescu-transform de�ned by
T̃�(f)(x)=

∫
� �

z(x; y)f(x) dyn, where, in the above two integral operators E is the ordinary
Cauchy-kernel while �z is the modi�ed Cauchy-kernel mentioned in the introduction. The
latter operator is de�ned in Reference [5].

Lemma 1 (G�urlebeck and Spr�o�ig [1])
Let f∈C1(�)∩C( ��), where � is a bounded domain in Rn with su�ciently smooth boundary.
Then DT�f=f. That is D−1

R =T�, where, D−1
R denotes the right inverse of D.

The reason why the Cauchy kernel needs to be modi�ed when working on unbounded
domains is given by the following result.

Lemma 2
Let � be an unbounded domain in Rn and suppose �¿0. Let ��=�\B(y; �), where B(y; �)
is a ball centred at y and radius �. Then, E(x − y)∈Lp(��), for n=(n− 1)¡p¡∞
Proof

∫
��

‖E(x − y)‖p dyn=
∫
��

1
‖x − y‖p(n−1) dy

n6C
∫ ∞

�
rp(1−n)+n−1 dr¡∞

if p¿n=(n− 1).
Thus, if n=3 we see that E(x; y)∈Lp(��) for 3

2¡p¡∞. In particular it is square inte-
grable. But for n=2, E(x; y) is not square integrable on ��. This dependency of the index
p on the dimension of the Euclidean space caused by the behaviour of the Cauchy kernel
at in�nity is avoided by either working on weighted spaces [3] or by using M�obius transfor-
mations [11] or by perturbing the T� transform by adding a smooth monogenic term whose

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1527–1539



1530 D. A. LAKEW AND J. RYAN

singularity lies outside of the domain under consideration [4,5,12]. For our work our choice
is the last one. The following lemma is instrumental in establishing the p integrability of the
modi�ed kernel �z for any p¿1 over unbounded domains.

Lemma 3 (K�ahler [12])
Suppose ‖x‖¿2max(‖y‖; ‖z‖). Then

‖E(x − y)− E(x − z)‖6C(n)
‖y − z‖+max(‖y‖; ‖z‖)

‖x‖n

where C(n)=2n+1(n− 1) is a constant that depends on the dimension n.

This lemma guarantees the absolute convergence of a modi�ed T� transform for unbounded
domains. The following fundamental result follows immediately from the above lemma.

Proposition 1
Let � be an unbounded domain whose complement contains a non-empty open set. Let z be
an arbitrary but �xed point lying in that complementary open set, and let ��=�\B(y; �) for
�¿0. Then �z ∈Lp(��) for 1¡p¡∞.
Proof
Let �r =�∩B(0; r), where B(0; r) is a big ball centred at 0 and radius r so that x, y
and z are contained in it. Then

∫
��

‖�z(x; y)‖p d��; x6limR→∞ C(n; p)
∫ R
� r−np+n−1 dr¡∞

for p¿1. Hence, the generalized Teodorescu transform is absolutely convergent on Wk
q;Cl0; n(�)

for q¿1 such that p−1 + q−1 = 1 and k ∈N ∪{0}.
Proposition 2
The T̃� transform is the right inverse of the Dirac operator over Wq;k

Cln (�) where � is an
unbounded domain in Rn, with C2 boundary, for k ∈N ∪{0} and q¿1.

Proof
Again, let r be large enough so that y∈B(0; r); y∈�. Then for z ∈ cl(�)c and �r=�∩B(0; r),
we have ∫

�
�z(x; y)f(x) d�x=

∫
�r

�z(x; y)f(x) d�x +
∫
�\�r

�z(x; y)f(x) d�x

Here cl(�) is the closure of �. From the Borel–Pompeiu formula, we have D�z=0 over this
domain. That is, the second summand of the above integral equation is monogenic. And from
the case for bounded domains, we have that Dy

∫
�R
�z(x; y)u(x) d�x= u(y).

Proposition 3
For 1¡p¡∞, k=0; 1; 2; : : :, and � an unbounded domain with C2 boundary, the operator
T̃� :W

p;k
Cln (�)→Wp;k+1

Cln (�) is a continuous mapping.

Proof
This is the same as the case p=2 in Reference [1].

From [9] one may also determine:

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1527–1539
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Proposition 4
For 1¡p¡∞, and � an unbounded domain with C2 boundary, the operator
T̃� :W

p;−1
Cln (�)→Lp

Cln(�) is a bounded operator.

De�nition 3
For 1¡p¡∞, the set {f : �→Cln: f is left monogenic and f∈Lp

Cln(�)} is called the
Bergman p-space for � and it is denoted by Bp

Cln(�).

Proposition 5
Let � and �L be unbounded domains in Rn with C2 boundaries and such that �L ⊃ ��
with 	L= @�L and

∑
= @� be C2 hypersurfaces. Let z be an arbitrary but �xed point

in Rn\ �� and {xm: m∈N} be a dense subset of ∑L. Then for each m∈N the function
�z

m(x)=�
z(x; xm)=E(x − xm)− E(x − z) is in Bp

Cl0; n(�) for 1¡p¡∞.

Proof
Clearly D�z

n(x)=0. And the p-integrability follows from Proposition 1 above.

Proposition 6
Suppose that f∈Bp

Cln(�) for some p∈ (1;∞) then for each point y∈� and each C2 hypersur-
face 
 bounding a subdomain �′ of � and with y∈�′ we have f(y)=1=!n

∫

 �

z(x; y)n(x)
f(x) d�(x).

Proof
We need only consider the cases where �′ is unbounded. Consider the closed ball D(y; R)=
{x ∈ Rn: ‖x − y‖6R}. Let 
1(R)= @D(y; R)∩ (�′ ∪
) and 
2(R)= @(�′\D(y; R). Clearly
f(y)=1=!n

∫

1(R)

�z(x; y)n(x)f(x) d�(x). As f∈Lp(�) then (
∫
�′\D(y;R) ‖f‖p dxn)1=p¡∞. So

for a given �¿0 we can �nd an R(�) such that (
∫
�′\D(y;R) ‖f‖p dxn)1=p¡� for each R¿R(�).

Let us denote the set �′\D(y; R) by �′(R). The subset X (R) of �′(R) for which ‖f(x)‖¿� has
to have measure less than �1=p whenever �¡1. So ‖f‖¡1 on �′(R)\X (R). So on any subdo-
main �′′(R) of �′(R)\X (R) with C2 boundary 
(R) the integral

∫

(R) �

z(x; y)n(x)f(x) d�(x)
vanishes. The result follows on letting R tend towards in�nity.

Using the modi�ed Cauchy kernel �z, we introduce two integral operators on the function
space Lp

Cln(
∑
). For 1¡p¡∞ the Cauchy-type boundary integral operator is de�ned to be

F̃∑f(y) :=
∫
∑ �z(x; y)n(x)f(x) d�(x)

where y =∈ ∑. The singular integral operator of Cauchy-type is formally de�ned to be
S̃∑f(y) :=2

∫
∑�z(x; y)n(x)f(x) d�(x)

where n(x) is the outward pointing unit normal vector to
∑

at the point x and y∈ ∑.
Here, S̃∑ is understood in terms of the Cauchy principal value. From the celebrated re-
sults of Coifman et al. [14], one can show that S̃∑ is a bounded mapping of Lp(

∑
) for

1¡p¡∞ with the weaker assumption that
∑
is a Lipschitz surface. We will only use the

fact that
∑
is C2 or better. The Coifman–McIntosh–Meyer Theorem tells us that the operator

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1527–1539



1532 D. A. LAKEW AND J. RYAN

S∑f(y)=1=!np:v:
∫∑ E(x−y)n(x)f(x) d�(x) is Lp bounded and hence, since the extra term

that is added to the kernel to form the modi�ed kernel has no singularity in
∑
we have the

Lp norm of the integral
∫∑ E(x − z)n(x)f(x) d�(x), where z is a �xed but arbitrary point

outside of
∑
, is dominated by the Lp norm of the integral p:v:

∫∑ E(x − y)n(x)f(x) d�(x).
See Reference [15] for closely related results.

Theorem 1 (K�ahler [12]) (The Borel–Pompeiu formula over unbounded domains)
Let f∈Wp;k

Cln (�); 1¡p¡∞; k ∈N ∪{0} and � be an unbounded domain in Rn and with C2

boundary. Then f= F̃∑f + T̃�Df for each x∈�.
Using the Cli�ord analysis version of the Cauchy integral formula described in Reference

[10] and elsewhere we have:

Theorem 2 (G�urlebeck and Spr�o�ig [2]Luzin)
Let f∈C1(�)∩C(cl(�)) and f is monogenic in �. Let also 
⊂� be a (n−1)-dimensional
manifold with f(x)=0 on 
. Then f ≡ 0 on cl(�).
Proposition 7 (see also Bernstein [3], Gurlebeck et al. [5], K�ahler [12])
Let �, p and k be as above. Then the operator

F̃∑ :Wp;k−1=p
Cln

(∑)
→Wp;k

Cln (�)∩ kerD(�)

is a continuous operator.

Proof
Let f∈Wp;k−11=p

Cln (
∑
). Then there exists a Cln-valued extension g∈Wp;k

Cln (�) with tr
∑g=f.

Using the Borel–Pompeiu formula, we get F̃∑f+T̃�Dg=g. Then since T̃� :W
p;k
Cln (�)→Wp;k+1

Cln

(�) and D :Wp;k
Cln (�)→Wp;k−1

Cln (�) are continuous, we see that the operator I� − T̃�D is
continuous from Wp;k

Cln (�) to Wp;k
Cln (�) where, I� is the identity operator over �.

Also, the Plemelj formulae are obtained just by looking at the traces of F̃∑f:

P̃∑f(x) := lim
n:t:�→x

F̃∑f(�)= 1
2(f(x) + S̃∑f(x))

Q̃∑f(x) := lim
n:t:�→x

− F̃∑f(�)= − 1
2 (f(x)− S̃∑f(x))

The Plemelj operators that we just introduced are extendible to the usual function spaces
Lp
Cln(�) and Wp;k

Cln (�) for k ∈N , as H�older continuous functions of compact support are dense
in the latter spaces.

3. COMPLETE SPACES

In this section, we will see a unique representation of a Cli�ord-valued harmonic function
f : �→Cln as a sum of a monogenic function and a T̃� transform of another monogenic

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1527–1539



CLIFFORD ANALYTIC COMPLETE FUNCTION SYSTEMS 1533

function, and some decomposition results of p-integrable functions over unbounded domains
in Rn. Also we search for special left-monogenic functions which are dense in the generalized
Bergman p space Bp

Cln(�). We begin with the following result which we will need later.

Lemma 4
Let 1¡p¡∞ and f∈ ker�(�)∩Wp;k

Cln (�); k ∈N ∪{0}. Then there exist unique functions
fi ∈ kerD(�)∩Wp;k+1−i

Cln (�); i=1; 2 such that f=f1 + T̃�f2.

Proof
From the Borel–Pompeiu formula, we have f= F̃∑f+T̃�Df in �, and also F̃∑f∈Wp;k

Cln (�)∩
kerD(�). Set f1 = F̃∑f and f2 =Df. Then f2 ∈Wp;k−1

Cln (�)∩ kerD(�), and f1 ∈ kerD(�)∩
Wp;k
Cln (�).
For the uniqueness, suppose f= g1 + T̃�g2. Then Df= g2 =f2 and T̃�g2 − T̃�f2 =

T̃�(g2 − f2)=0.

Theorem 3 (K�ahler [12])
Let 1¡p¡∞, and � be an unbounded domain with C2 boundary. Then Lp

Cln(�) has a direct
decomposition.

Lp
Cln(�)=Bp

Cln(�)⊕D(W 0;p;1
Cl0; n (�))

where ⊕ here is a direct sum. It is an orthogonal sum when p=2.

This direct decomposition of Lp
Cln(�) gives us projections:

P :Lp
Cln(�)→Bp

Cln(�)

Q :Lp
Cln(�)→D(W 0;p;1

Cln (�))

For p=2, these projections are ortho-projections. These projections have representation
formula in terms of tr∑; F̃∑ and T̃�. See References [2,12] for instance.
Next we search for special left-monogenic functions which are dense in the generalized

Bergman p space Bp
Cln(�). The functions will be de�ned from fundamental solutions of the

Dirac operator and Laplacian. We choose dense points in an outer surface and construct
functions from the fundamental solutions to have these points as their singularities. These
functions then, are just shifted fundamental solutions or shifted kernels of the respective partial
di�erential operators. Let us start with generalized concepts known in classical analysis.

De�nition 4
Let X be a normed right-vector space over Cln. A system of points {xm: m∈N}⊂X is called
Cl0; n complete system in X , if the points approximate X �nitely. I.e for each ”¿0, for each
x∈X , there exists ci ∈Cln; i=1; 1; : : : ; n0 such that∥∥∥∥∥x −

n0∑
i=1

xici

∥∥∥∥∥ x¡�

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1527–1539
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De�nition 5
A system of points {xm: m∈N}⊂X is called closed in X if every bounded Cln-valued right-
linear functional F that vanishes on the points vanishes on the whole space X .

Lemma 5
The system of points {xm: m∈N}⊂X is closed if it is Cln-complete in X .

Thus, we have the following fundamental result over unbounded domains with C2 bound-
aries.

Proposition 8
Let � and �L be unbounded domains with C2 boundaries such that �L ⊃ cl(�). Let ∑ = @�
and

∑
L = @�L be C2 hypersurfaces. Let z be an arbitrary but �xed point in Rn\(�), also

{xm: m∈N} be a dense subset of ∑L. Then the function system Y = {�z
m: m∈N} forms a

Cln-complete system in Bp
Cln(�) for 1¡p¡∞.

Proof
From Lemma 5 above, it su�ces to show that Y is closed. So we need that every F ∈Bp

Cln(�)
?

that vanishes on Y vanishes on Bp
Cln(�). Here, Bp

Cln(�)
? is the space of all bounded Cln-

valued continuous linear functionals on Bp
Cln(�). So, let F ∈Bp

Cln(�)
? such that F =0 on Y .

But F(�z(x; y)) de�nes a monogenic f function on Rn\({z}∪ cl(�)). Moreover, f(x)=0 on
a dense subset of @�L. A simple density argument shows that f(x)=0 on all of @�L. From
Lusin’s Theorem it follows that f is identically zero.
From the classical Hahn–Banach extension theorem, F has an extension say Fe to the whole

space Lp
Cln(�) with the same Cli�ord norm as F . From Riesz’ linear functional representation

theorem, the functional Fe can be given by: Fe( )=
∫
� �g d� on the space Lq

Cln(�) where,
g∈Lq

Cln(�) and p−1 + q−1 = 1, with p¿1 and q¿1 and Fe( )=F( ) for  ∈Bp
Cln(�).

Let �1 and �2 be domains with C2 boundaries and such that � ⊂ �1 ⊂ �2. It follows that
Bp
Cln(�2) ⊂ Bp

Cln(�1) ⊂ Bp
Cln(�). Furthermore by Proposition 6 for each f∈Bp

Cln(�2) and each
y∈�

f(y)=
1
!n

∫
@�1
�z(x; y)n(x)f(x) d�(x)

It follows that

Fe(f)=
∫
�
g(y)f(y) dyn=

1
!n

∫
�
g(x)

∫
@�1
�z(x; y)n(x)f(x) d�(x)

A simple application of Fubini’s Theorem now reveals that Fe(f)=0 for each f∈Bp
Cln(�2).

By taking inductive limits of the Banach spaces the result follows.

Corollary
Under the hypothesis of the above theorem, the system {�z

m: m∈N} is Cln-complete in
Wp;k
Cln (�)∩Bp

Cln(�) for k ∈N ∪{0}.
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Lemma 6
Let ‖x‖¿2max(‖y‖; ‖z‖). Then:∥∥∥∥ 1

‖x − y‖n−2 −
1

‖x − z‖n−2
∥∥∥∥6 (n− 3)2n−1‖y − z‖

‖x‖n−1

Proof
Assume that ‖x‖¿2max(‖y‖; ‖z‖). Then

‖x‖n−1
∥∥∥∥ 1
‖x − y‖n−2 −

1
‖x − z‖n−2

∥∥∥∥
= ‖x‖

∥∥∥∥∥
( ‖x‖
‖x − y‖

)n−2
−
( ‖x‖
‖x − z‖

)n−2∥∥∥∥∥
= ‖x‖2

∥∥∥∥ 1
‖x − y‖ − 1

‖x − z‖
∥∥∥∥ n−3∑

i=1

( ‖x‖
‖x − y‖

)i ( ‖x‖
‖x − z‖

)n−3−i

6(n− 3)2n−1‖y − z‖:

Then the inequality follows.

Corollary
Let � be an unbounded domain in Rn, and let z ∈ cl(�)c be a �xed but arbitrary point. Let
also ��=�\B(y; �) for �¿0. Then:

�z
1(x; y) :=

1
(2− n)!n

(
1

‖x − y‖n−2 −
1

‖x − z‖n−2
)
∈Lp

Cln(��)

for n=(n− 1)¡p¡∞.
Proof
This follows from Lemma 6.

Proposition 9
Let �, �L be unbounded C2 domains in Rn with �L ⊃�, and z be an arbitrary but �xed point
in Rn\cl(�). Let {xm: m∈N} ⊂ �L. For each x∈�, de�ne:

�z
m;0(x) :=− 1

!n

(
x − xm

‖x − xm‖n − x − z
‖x − z‖n

)

and

�z
m;1(x) :=

1
(2− n)!n

(
1

‖x − xm‖n−2 −
1

‖x − z‖n−2
)

Then

T̃�(�z
m;0)(x)=�

z
m;1(x) + h

where, h is monogenic on � and �z
m;0 =�

z
m.
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Proof
We have that �z

m;0(x)=Dx(�z
m;1(x)). Then taking the T̃�-transform of both sides of the above

equation and using the Borel–Pompeiu formula, we get

T̃��z
m;0(x)= T̃�D�z

m;1(x)=�
z
m;1(x)− F̃∑�z

m;1(x)

Then taking h=− F̃∑�z
m;1 ∈ kerD(�), we get the result.

Here is another fundamental result on completeness which is a generalization of a result of
G�urlebeck and Spr�o�ig [2].

Proposition 10
Let � and �L be the domains in Proposition 9 with

∑
= @�;

∑
L= @�L; and z as de�ned

before. Let {xm: m∈N} be a dense subset of ∑L. Then for n=(n− 1)¡p¡∞, the set
{�z

m;0: m∈N}∪ {�z
m;1: m∈N}

is Cln-complete in the space ker�(�)∩Lp
Cln(�).

Proof
Let f∈Lp

Cln(�)∩ ker�(�) and let �¿0 be given. Then for k¿1, there exists a sequence
{fj}⊂Wp;k+1

Cln (�)∩ ker�(�) such that limj→∞ fj=f in Lp
Cln(�). Thus, there exists n0 ∈N

such that ‖fj−f‖Lp6 �=2, for every n¿ n0. But also from Lemma 4, there exist g1 ∈ kerD(�)∩
Wp;k
Cln (�), g2 ∈ kerD(�)∩Wp;k−1

Cln (�) such that fn0 = g1 + T̃�g2. From the Cln-completeness of
{�z

m: m∈N} over kerD(�)∩Lp
Cln(�), there exists n1 ∈N and appropriate Cli�ord numbers

ci; n1 ; i=1; 2; : : : ; n1 with ∥∥∥∥∥g2 −
n1∑
i=1

�z
i ci; n1

∥∥∥∥∥
p; k

6
�

4‖T̃�‖op

where ‖T̃�‖op is the operator norm of T̃�. This implies:∥∥∥∥∥T̃� g2 − T̃�

(
n1∑
i=1

�z
i ci; n1

)∥∥∥∥∥
p

6
�
4

Also, since

T̃�

(
−

n1∑
i=1

�z
i;0ci; n1

)
=

n1∑
i=1

�z
i;1 ci; n1 +

n1∑
i=1

 i;�ci; n1

where,  i;� ∈ kerD(�), for i=1; 2; : : : ; n1; then denoting the expression g1+
∑n1

i=1  i;�ci; n1 ∈ ker
D(�) by g3, again from the completeness of {�z

m: m∈N} in Bp
Cln(�), there exists n2 ∈N and

Cli�ord numbers bi; n2 ; i=1; 2; : : : ; n2 with∥∥∥∥∥g3 −
n2∑
i=1

�z
i;0 bi; n2

∥∥∥∥∥
p

6
�
4
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Hence,

∥∥∥∥∥fn0 −
n1∑
i=1

�z
i;1cin1 −

n2∑
i=1

�z
i bi; n2

∥∥∥∥∥
p

=

∥∥∥∥∥g1 + T̃�g2 −
n1∑
i=1

�z
i;1ci; n1 −

n2∑
i=1

�z
i;0 bi; n2

∥∥∥∥∥
p

=

∥∥∥∥∥g1 +
n1∑
i=1

 i;�ci; n1 −
n1∑
i=1

 i;�ci; n1 −
n1∑
i=1

�z
i;1 ci; n1 −

n2∑
i=1

�z
i;0bi; n2 + T̃�g2

∥∥∥∥∥
p

=

∥∥∥∥∥g3 −
n2∑
i=1

�z
i bi; n2 + T̃�g2 −

n1∑
i=1

 i;�ci; n1 −
n1∑
i=1

�z
i;1ci; n1

∥∥∥∥∥
p

6

∥∥∥∥∥g3 −
n2∑
i=1

�z
i bin;2

∥∥∥∥∥
p

+

∥∥∥∥∥T̃�g2 −
n1∑
i=1

 i;�ci; n1 −
n1∑
i=1

�z
i;1ci; n1

∥∥∥∥∥
p

=

∥∥∥∥∥g3 −
n2∑
i=1

�z
i bi; n2

∥∥∥∥∥
p

+

∥∥∥∥∥T̃�g2 −
(

n1∑
i=1

�z
i;1ci; n1 +

n1∑
i=1

 i;�ci; n1

)∥∥∥∥∥
p

=

∥∥∥∥∥g3 −
n2∑
i=1

�z
i bi; n2

∥∥∥∥∥
p

+

∥∥∥∥∥T̃�g2 − T̃�

(
n1∑
i=1

�z
i;0ci; n1

)∥∥∥∥∥
p

6

∥∥∥∥∥g3 −
2∑

i=1

�z
i;0bi; n2

∥∥∥∥∥Lp+ ‖T̃�‖
∥∥∥∥∥g2 −

n1∑
i=1

�z
i;0ci; n1

∥∥∥∥∥
p

6
�
4
+

�
4
=

�
2

Thus,∥∥∥∥∥f −
n1∑
i=1

�z
i;1ci; n1 −

n2∑
i=1

�z
i;0bi; n2

∥∥∥∥∥
p

=

∥∥∥∥∥f − fn0 + fn0 −
n1∑
i=1

�z
i;1ci; n1 −

n2∑
i=1

�z
i;0 bi; n2

∥∥∥∥∥
p

6 ‖f − fn0‖p +
∥∥∥∥∥fn0 −

n1∑
i=1

�z
i;1ci; n1 −

n2∑
i=1

�z
i;0 bi; n2

∥∥∥∥∥
p

¡
�
2
+

�
2
= �

Therefore, the proposition is proved.

Corollary
Let n=(n− 1)¡p¡∞ and z be an arbitrary but �xed point in Rn\(�). Then, for each k ∈N ,
the set, {�z

m;0;�
z
m;1: m∈N} is Cln-complete in the space Wp;k

Cln (�)∩ ker � (�).
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4. SOME APPLICATIONS

The complete function systems we constructed above are now to be used to approximate
solutions to partial di�erential equations of the respective order. Thus, we have the following
results.

Proposition 11
Let 1¡p¡∞; � be an unbounded C2 domain in Rn and z be an arbitrary but �xed point in
Rn\Cl(�). Let u∈Bp

Cln(�). Then there exist Cli�ord numbers ci; n1 ; i=1; 2; : : : ; n1 such that
for each �¿0 ∥∥∥∥∥u−

n1∑
i=1

�z
i;0ci; n1

∥∥∥∥∥
p

¡�

on �.

Proposition 12
Let n=(n − 1)¡p¡∞; g∈Wp;k+2−1=p

Cln (
∑
) and � be su�ciently smooth and unbounded do-

main in Rn and z be as above. Then for u∈ ker(�)∩Lp
Cln(�) there exist Cli�ord numbers

ci; n1 ; i=1; 2; : : : ; n1 and ci; n2 ; i=1; 2; : : : ; n2 such that for each �¿0 we have∥∥∥∥∥u−
n1∑
i=1

�z
i;0ci; n1 −

∑
i=1

�z
i;1ci; n2

∥∥∥∥∥
p

¡�

on �.
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