Discrete Differential Equations and Z-’I‘ransform
Dejenie Alemayehu Lakew

ABSTRACT. In this short paper we define a dicrete Lapace transform, list some
properties of it and solve some first and second order discrete differential equa-
tions or simply called difference equations whose solutions are polynomials of
integers or their quotients.

1. Z-’I‘ransform: Definition and Examples.

Laplace transform is one of the fine tools available to solve linear differen-
tial equations with constant coefficients. In this short note, we introduce a Z-
transform( or a discrete transform), develop some of its properties and see its ap-
plications in solving discrete differential equations or simply difference equations
of special types: difference equations whose solutions are polynomials of positive
integers or their quotients. In the sequel, N denotes the set of all natural numbers,
R denotes the set of all real numbers and IVP stands for Initial Value Problem.

DEFINITION 1. Let f : N — R be a sequence and let s > 0. We define the
discrete Laplace transform of f by £q{f (n) Zf —sT provided the

n=1

Series cCoOnverges.

EXAMPLE 1. {4{1} (s) =

EXAMPLE 2. {;{n} (s) = s > 0. Indeed from the geometric series
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Therefore,

La{n}(s) = Z ne "

eS

="

EXAMPLE 3. {4 {n%} (s) = (662:;"15)53. Here again, for —1 <z <1:

(al25))

m2+x
(1—=)*

o0
g n2zg"
n—1

Hence

bg{n*}(s) = ane_sn

n=1
628 + e
(es—1)°

By performing two operations one after the other: differentiating and multi-
o0

plying by x on Z 2" = 7% for —1 < < 1, we get the following results:

n=1
A 3 2
e’® 4+ 4e”’ + e°
lg{n3t (s)= ——— —
() = S
A 4 3 2
e* +11e’% + 11e*% + €*
Ed{”4}(3): 5
(es —1)
A 5 4 3 2
e’® 4 26e* + 66¢e°° + 26¢e°° + e*
Ed{"5}(3): 6
(e —1)
A

€% 4+ 57e5% + 302e* + 302e3¢ + 572 + e*
(e 1)
PROBLEM 1. What is {q {n"} (s) for any k € N ¢

Ly {n6} (s) =

2. Existence and some properties of the /;-transform.

Let f(n) : N — R be a sequence such that | f (n) |< ae®™ for a > 0, so > 0.
o0

Then Z f(n)e=*™ is absolutely convergent and hence is convergent. Therefore,
n=1

for such a sequence, the discrete Laplace transform €4 {f (n)} (s) exists finitely for
s > sp, since
o0

[
—sn (so—s)n __ @
1> Fn)e \S;ae TN = S < Fo0

n=1
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for s > sg. From this, we conclude that sequences which are polynomials in n have
discrete Laplace transforms.

LEMMA 1. 44 and its inverse E;l are both linear.
PROPOSITION 1. (Transform of translate of a sequence). For k € N,

k

Calf (n+k)} () = " {f ()} (s) = D F (§) e,

i=1

PrOOF. Let f: N — R be a sequence. Then

n=1

S fm)estnh

m=k+1
oo oo k
_ esk‘ Z f (m) e~ — ek:s Z f (m) e=Sm _ Z f (Z) e(k—i)s
m=k+1 m=1 i=1
k
=M {f ()} (s) = 3 F (@) e
i=1

COROLLARY 1. £g{f (n+ 1)} (s) = e*Cq {f (n)} (s) — f (1).

DEFINITION 2. Let f : N — R be a sequence. The discrete derivative of of f
denoted

Af(n):=f(n+1)=f(n).

PROPOSITION 2. (Transform of of a discrete derivative of a sequence).

ta{Af(n)}(s) = (e =) la{f ()} — f(1).

PROOF.
La{AF ()} (s) =Y Af(n)e™™ = (f(n+1)— f(n)e ™

= D f+De =3 fm)e "
n=1 n=1
la{f (n+1)} = a{f (n)}

= (" =D la{f(n)}(s) = f(1).
O

Next we define a discrete convolution operator on sequences which latter will
be useful in solving discrete initial value problems.
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DEFINITION 3. Let f,g: N — R be two sequences . Then the discrete convolu-
tion of f and g denoted (f * g) (n) is defined by

n—1

(fxg)(n):=>Y f(k)g(n—Fk).

k=1

EXAMPLE 4. (1x1)=n—1

2
EXAMPLE 5. (nx1) = 5"

EXAMPLE 6. (n*n) = "36_"

PROPOSITION 3. (Transform of a discrete convolution).

Ca{(f*g) (n)} (s) = La{f (n)} La{g (n)}.

PROOF. From the product of the two series:

(i anm") (i bnx"> = i cpx”
n=1 n=1 n=2

n—1
where ¢, = E arby,_1, we have,
k=1

al(fr) () = D (Frg) (mye™™

<Z f (n) e—sn) (Zg (n) e—sn)
= La{f(n)}lafg(n)}.

n—1

COROLLARY 2. {4 {Z f(k)} (5) = Lalfh,

k=1

PrOOF. Follows from the fact that choosing g = 1, we have

n—1
(Fx9)(n) = f(n)x1=2 f(k).
k=1
Then taking the transform of both sides, we have the result. O

PROPOSITION 4. For a sequence f: N — R,

Lafnf (W)} (5) = o (CalT ()} (5)).
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PROOF.

=Y (=nf(m)e™") = —La{nf (n)} (s).

n=1

COROLLARY 3. Fork € N, £y {n*f(n)} (s) = (—1)" L%fd {f(n)}(s).

REMARK 1. By taking f =1, we get the relation:

g dF

Lalnh () = (D Tt {1) ()
k 1
() iy (e
dsk \es —1
3. Initial value problems of discrete differential equations.

In this section we solve initial value problems of discrete differential equations
using the discrete Laplace transform.

PROPOSITION 5. The first order discrete IVP: Af(n) = n, f(1) = 1, has
solution given by
n?—n
2

PROOF. Taking the transform of both sides of the equation : £; {Af (n)}(s) =
Lq{n}, we get

fn)=1+

eS

(es—1)*
Substituting the value f (1) = 1, and simplifying the expression we get,

ta{f (n)}(s) = esl_l - (686_81)3,

Then taking the inverse transform we have the solution :

(€ =1)la{f(n)}(s) = F(1) =

fln) = gdl{esl—1+(ese_81)3}

= 14+mxl)=14+2""

"

Here "+ " is the convolution operator. (]

PROPOSITION 6. The second order IVP: A2f (n) =n, f(1) =1, Af(1) =2,
has solution given by :

f(n)=2n—1+W-
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PROOF. First, A2f (n) = A(Af(n)) = f(n+2)—2f (n+ 1)+ f (n) and using
the initial conditions we get:

Ca{D%f(n)}(s) = (% —2e* + 1) La{f (n)}(s) —e* — L.

:>(65_1)2&1{]0(”)}(8)_65_1:7

= Ed {f (n)} (S) = (65 o 1)2 + (65 _ 1)2 + (es _ 1)4

Then taking the inverse transform and using convolutions, we get the solution
as :
—1 -2
(1*1)+n+—n(n é(n )

(n—l)(n—2).
6

f(n)

= -1+ "

PROPOSITION 7. {4 {1} (s)=s—In(e® —1) fors>0.

PROOF. (q{1}(s) = =+ = Z e " for s > 0. Integrating both sides, we get

n=1

(e’ —1)—s = i (—e::>

n=1

u{ e

:ed{i}(s)zs—ln(es—l).

We now present discrete IVPs whose solutions are rational sequences in n.

PROPOSITION 8. The discrete IVP : nAf (n) =1, f(2) =2, forn > 2

n—1
has solution given by: f(n) =1+ Z %
k=1

PRrOOF. Taking the transform of both sides of the equation, we have:

1
es—1

ta{nAf (n)} (s) =

But
ta{nf(n)}(s) = La{nf (n+1) —nf(n)}(s)
= e’ la{nf (n)}(s) — e la{f (n)} (s) = La{nf (n)} (s)
= (e = Dla{nf (n)}(s) — e la{f ()} (s).
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Thus,
(¢~ 1) lafnf ()} = € La F (W)} = .
Again,
Ca{nf (1)} (5) = S La {F ) 5).
Therefore,

(=) AT )} () — €L T () () =

which is an ordinary non-homogenious linear differential equation of first order in
s. writing it in standard form we have :

(&

L ()} (5) = —

657

d
%ed {f(n)}(s) + -1y
whose solution for €4 {f (n)}(s) is given by —i— — B =U=s " Thep taking the

es—1 es—1
inverse transform , we have the solution to be :

fo) = 651{ 1 +sm(esn}

es—1 e’ —1

1
= 1+€;1{s—ln(eS—1)}*€;1{es_l}

n—1

1 1

PROPOSITION 9. Forn > 2, the IVP : Af (n) = %, f(2) =2
n—1

has solution given by f(n) =1+ Z ol
k=1
PROOF. Re-writing the difference equation as : nAf (n) = %, taking the trans-
form of both sides and using corollary 3.3 we get

e’ ~s—In(e’ —1)

AT ) () + =l ()} (5) = — S
Again solving for ¢4 {f (n)} (s), we have

1 1

éﬂﬂ@ﬂﬂ=€ileti/@—mw—nm&
:f(n)=l—ﬁgl{651_1}*E;l{/(s—ln(es—l))ds}
)

n—1 1
14> =
k=1
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