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NORM ESTIMATES FOR SOLUTIONS OF ELLIPTIC BVPS OF

THE DIRAC OPERATOR

DEJENIE A. LAKEW

Abstract. We present norm estimates for solutions of first and second order
elliptic BVPs of the Dirac operator D =

∑n
j=1

ej∂xj
considered over bounded

and smooth domain Ω of R
n. The solutions whose norms to be estimated

are in some Sobolev spaces W k,p (Ω) and the boundary conditions as traces
of solutions and their derivatives are in some Slobodeckij spaces Wλ,p (∂Ω)
where λ is some non integer but fractional number, for 1 ≤ p < ∞ and k ∈ Z.

1. Algebraic and Analytic Rudiments of Cln

Let {ej : j = 1, 2, ..., n} be an orthonormal basis for R
n that is equipped with

an inner product so that

(1.1) eiej + ejei = −2δije0

where δij is the Kronecker delta. The inner product satisfies an anti commutative
relation

(1.2) x2 = −‖x‖2

Therefore Rn with these properties of base vectors generates a non commutative
algebra called Clifford algebra denoted by Cln.

The basis of Cln will then be

{eA : A ⊂ {1 < 2 < 3 < ... < n}}

which implies:

dim(Cln) = 2n

The object e0 used above is the identity element of the Clifford algebra Cln.

Representation of elemnets of Cln: every a ∈ Cln is represented by

(1.3) a =
∑

eAaA

where aA is a real number.
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Thus every x = (x1, x2, ..., xn) ∈ R
n can be identified with

∑n

j=1 ejxj of Cln
and therefore we have an embedding

R
n →֒ Cln

We also define what is called a Clifford conjugate of

a =
∑

eAaA

as
a =

∑

eAaA

where
ej1 ...ejr = (−1)

r
ejr ...ej1

For instance for i, j = 1, 2, ..., n,

ej = −ej, e2j = −1

and for
i 6= j : eiej = (−1)2ejei = ejei

Definition 1. We define the Clifford norm of

a =
∑

eAaA ∈ Cln

by

(1.4) ‖a‖ = ((aa)0)
1
2 =

(

∑

a2A
A

)
1
2

where (a)0 is the real part of aa.

The norm ‖.‖ satisfies the inequality:

(1.5) ‖ab‖ ≤ c (n) ‖a‖‖b‖

with c (n) a dimensional constant.

Also each non zero element x ∈ R
n has an inverse given by :

(1.6) x−1 =
x

‖x‖2

∢ In the article it is always the case that 1 < p <∞ unless otherwise specified
and Ω is a bounded and smooth (at least with C1 - boundary ∂Ω) domain of Rn

A Clifford valued (Cln- valued) function f defined on Ω as

f : Ω −→ Cln

has a representation

(1.7) f =
∑

A

eAfA

where fA : Ω −→ R is a real valued component or section of f .
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Definition 2. For a function f ∈ C1 (Ω) ∩ C
(

Ω
)

, we define the Dirac derivative
of f by

(1.8) Df (x) =

n
∑

j=1

ej∂xj
f (x)

A function f : Ω −→ Cln is called left monogenic or left Clifford analytic over
Ω if

Df (x) = 0, ∀x ∈ Ω

and likewise it is called right monogenic over Ω if

f(x)D =

n
∑

j=1

∂xj
f (x) ej = 0, ∀x ∈ Ω

An example of both left and right monogenic function defined over R
n\{0} is

given by

ψ (x) =
x

ωn‖x‖n

where ωn is the surface area of the unit sphere in R
n.

The function ψ is also a fundamental solution to the Dirac operator D and we
define integral transforms as convolutions of ψ with functions of some function
spaces below.

Definition 3. Let f ∈ C1 (Ω, Cln) ∩ C
(

Ω
)

.
We define two integral transforms as follow:

(1.9) ζΩf (x) =

∫

Ω

ψ (y − x) f (y)dΩy, x ∈ Ω

(1.10) ξ∂Ωf (x) =

∫

∂Ω

ψ (y − x) υ (y) f (y)d∂Ωy, x /∈ ∂Ω

The integral transform defined in (1.9) a domain integral is called the Theodor-
escu transform or the Cauchy transform. It is a convolution ψ ∗ f over Ω. The
integral transform defined in (1.10) is some times called the Feuter transform as
a boundary integral which again is a convolution ψ ∗ υf over ∂Ω. υ (y) is a unit
normal vector pointing outward at y ∈ ∂Ω.

2. Sobolev and Slobodeckij Spaces

Definition 4. For 1 < p <∞, k ∈ N ∪ {0} we define:

I: The Sobolev space W k,p (Ω) as

W k,p (Ω) := {f ∈ Lp (Ω) : Dαf ∈ Lp (Ω) , ‖α‖ ≤ k}
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with norm

(2.1) ‖f‖Wk,p(Ω) =





∑

‖α‖≤k

∫

Ω

|Dαf |pdx





1
p

II: The Slobodeckij spaces for 0 < λ < 1 as

Wλ,p (∂Ω) := {f ∈ Lp (∂Ω) :

∫

∂Ω

∫

∂Ω

|f (x)− f (y) |p

|x− y|n+λp−1
dσxdσy <∞}

and norm is defined by

(2.2) ‖f‖Wλ,p(∂Ω) =

(∫

∂Ω

∫

∂Ω

|f (x)− f (y) |p

|x− y|n+λp−1
dσxdσy

)
1
p

III: The Slobodeckij spaces for λ = [λ] + {λ} where 0 < {λ} < 1 :

Wλ,p (∂Ω) := {f ∈W [λ],p (∂Ω) :
∑

‖α‖≤[λ]

∫

∂Ω

|Df |pdσx+
∑

‖α‖=[λ]

∫

∂Ω

∫

∂Ω

|Dαf (x)−Dαf (y) |p

|x− y|n+{λ}p−1
dσxdσy <∞}

and hence norm is given by
(2.3)

‖f‖Wλ,p(∂Ω) =





∑

‖α‖≤[λ]

∫

∂Ω

|Df |pdσx +
∑

‖α‖=[λ]

∫

∂Ω

∫

∂Ω

|Dαf (x)−Dαf (y) |p

|x− y|n+{λ}p−1
dσxdσy





1
p

In the definitions of the Slobodeckij spaces and associated norms, the irregularity
exponent n+ {λ}p− 1 is due to the fact that the dimension of ∂Ω is n− 1 and dσ
is a hypersurface measure on ∂Ω.

Slobodeckij spaces as subspaces of Sobolev spaces but with fractional exponents
are analogues of the Hölder spaces in classical spaces of continuous functions.

3. Some Properties and Relations Between D, ζΩ,τ and ξ∂Ω

Proposition 1. D :W k,p (Ω, Cln) −→W k−1,p (Ω, Cln) is continuous with

‖Df‖Wk−1,p(Ω,Cln) ≤ γ‖f‖Wk,p(Ω,Cln)

for γ = γ (n, p,Ω) a positive constant.

Proof. Let f ∈ W k,p (Ω, Cln). We need to show that

‖Df‖Wk−1,p(Ω,Cln) ≤ c‖f‖Wk,p(Ω,Cln)

for some positive constant c.

f ∈W k,p (Ω, Cln) =⇒ ‖f‖Wk,p(Ω,Cln) =







∑

∫

Ω
‖α‖≤k

|Dαf |pdx







1
p

<∞
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But then

‖Df‖Wk−1,p(Ω,Cln) =







∑

∫

Ω
‖α‖≤k−1

|Dαf |pdx







1
p

≤







∑

∫

Ω
‖α‖≤k−1

|Dαf |pdx +
∑

∫

Ω
‖α‖=k−1

|Dαf |pdx







1
p

=







∑

∫

Ω
‖α‖≤k

|Dαf |pdx







1
p

= ‖f‖Wk,p(Ω,Cln)

Therefore for c = 1, the proposition is proved. �

Proposition 2. D : Lp (Ω) −→W−1,p (Ω) is continuous for 1 < p <∞.

Proof. Let f ∈ Lp (Ω). Then

‖Df‖W−1,p(Ω) = sup{
|〈Df, v〉|

‖v‖
W

1,q
0

(Ω)

: v 6= 0, v ∈W 1,q
0 (Ω)}

for p−1 + q−1 = 1.

But

|〈Df, v〉| = |〈f,Dv〉| ≤ ‖f‖Lp(Ω)‖Dv‖Lq(Ω) ≤ ‖f‖Lp(Ω)‖v‖W 1,q
0

(Ω)

Thus by the Cauchy-Schwartz inequality we have

|〈Df, v〉|

‖v‖W 1,q
0

(Ω)

≤
‖f‖Lp(Ω)‖v‖W 1,q

0
(Ω)

‖v‖W 1,q
0

(Ω)

= ‖f‖Lp(Ω)

Therefore

‖Df‖W−1,p(Ω) = sup{
|〈Df, v〉|

‖v‖W 1,q
0

(Ω)

: v 6= 0, v ∈W 1,q
0 (Ω)}

≤ sup{
‖f‖Lp(Ω)‖v‖W 1,q

0
(Ω)

‖v‖W 1,q
0

(Ω)

: v 6= 0, v ∈W 1,q
0 (Ω)}

= ‖f‖Lp(Ω)

�
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Proposition 3. (Mapping properties) ([4], [6])

Let k ∈ N∪{0} and 1 < p <∞. Then there are positive constants β = β (n, p,Ω),
θ = θ (n, p,Ω) and δ = δ (n, p,Ω) such that

(3.1) ζΩ :W k,p (Ω, Cln) −→W k+1,p (Ω, Cln)

with
‖ζΩf‖Wk+1,p(Ω,Cln) ≤ β‖f‖Wk,p(Ω,Cln)

(3.2) ξ∂Ω :Wλ,p (∂Ω, Cln) −→Wλ+ 1
p
,p (Ω, Cln)

with
‖ξ∂Ωf‖

W
λ+ 1

p
,p
(Ω,Cln)

≤ θ‖f‖Wλ,p(∂Ω,Cln)

and

(3.3) τ : W k,p(Ω, Cln) −→W k− 1
p
,p (∂Ω, Cln)

is the trace operator with

∑

‖α‖≤[λ+ 1
p
]

∫

Ω

|Dατf |pdx+
∑

‖α‖=[λ+ 1
p
]

∫

Ω

∫

Ω

|Dατf(x)−Dατf(y)|p

|x− y|n+{λ+ 1
p
}p

dxdy

≤ δp





∑

‖α‖≤[λ]

∫

∂Ω

|Dαf |pdx+
∑

‖α‖=[λ]

∫

∂Ω

∫

∂Ω

|Dαf(x)−Dαf(y)|p

|x− y|n−1+{λ+ 1
p
}p

dσxdσy





Proposition 4. The composition ξ∂Ω ◦ τ preserves regularity of a function in a
Sobolev space.

Proof. Indeed, τ makes a function to loose a regularity fractional exponent of 1
p

when taken along the boundary of the domain. But the boundary or Feuter integral
ξ∂Ω augments the regularity exponent of a function defined on the boundary by an
exponent of 1

p
.

Therefore the composition operator ξ∂Ω ◦ τ preserves or fixes the regularity ex-
ponent of a function in a Sobolev space.

�

Proposition 5. (Borel-Pompeiu )
Let f ∈W k,p (Ω, Cln) . Then

f = ξ∂Ωτf + ζΩDf

Corollary 1. (i) If f ∈ W k,p
0 (Ω, Cln), then

f = ζΩDf

That is D is a right inverse for ζΩ and ζΩ is a left inverse for D over traceless
spaces.
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(ii) If f is monogenic function over Ω, then

f = ξ∂Ωτf

Therefore monogenic functions are always Cauchy transforms of their traces over
the boundary.

4. Elliptic First and Second Order BVPs

Proposition 6. Let f ∈ W k−1,p (Ω, Cln) for k ≥ 1. Then the first order elliptic
BVP:

(4.1)

{

Du = f in Ω
τu = g on ∂Ω

has a solution u ∈ W k,p (Ω, Cln) given by

u (x) = ξ∂Ωg + ζΩf

Proof. The proof follows from the Borel-Pompeiu relation. As to where exactly u
and g belong, we make the argument : f is in W k−1,p (Ω, Cln) and hence from the
mapping property of D, we have u to be a function in W k,p (Ω, Cln).

Also from the mapping property of the trace operator τ we have

τu = u|∂Ω = g ∈ W k− 1
p
,p (∂Ω, Cln)

�

Proposition 7. The solution u ∈W k,p (Ω, Cln) has a norm estimate :

‖u‖Wk,p(Ω,Cln) ≤ γ1





∑

‖α‖≤k−1

∫

∂Ω

|Dαg|pdσx+
∑

‖α‖=k−1

∫

∂Ω

∫

∂Ω

|Dαg (x)−Dαg (y) |p

|x− y|n+p−2
dσxdσy





1
p

+γ2





∑

‖α‖=k−1

∫

∂Ω

|f |pdx





1
p

where γ1, γ2 are constants the depend on p,n and Ω.

Proof. First let us determine regularity exponents of

g ∈ W k− 1
p
,p (∂Ω, Cln)

For the regularity index k − 1
p
the integer part is

[k −
1

p
] = k − 1
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and the fractional part is

{k −
1

p
} = 1−

1

p

Besides dim (∂Ω) = n− 1. From the mapping properties of D, ζΩ, τ and ξ∂Ω, we
have

u ∈ W k,p (Ω, Cln)

and

τu = g ∈ W k− 1
p
,p (∂Ω, Cln)

Therefore the solution u given by:

u (x) = ξ∂Ωg + ζΩf

has norm estimate

‖u‖Wk,p(Ω,Cln) = ‖ξ∂Ωg + ζΩf‖Wk,p(Ω,Cln)

≤ ‖ξ∂Ωg‖Wk,p(Ω,Cln) + ‖ζΩf‖Wk,p(Ω,Cln)

≤ γ1‖g‖
W

k− 1
p
,p
(∂Ω,Cln)

+ γ2‖f‖Wk−1,p(Ω,Cln)

= γ1





∑

‖α‖≤k−1

∫

∂Ω

|Dαg|pdσx+
∑

‖α‖=k−1

∫

∂Ω

∫

∂Ω

|Dαg (x)−Dαg (y) |p

|x− y|n−1+{k− 1
p
}p

dσxdσy





1
p

+γ2





∑

‖α‖=k−1

∫

∂Ω

|f |pdx





1
p

= γ1





∑

‖α‖≤k−1

∫

∂Ω

|Dαg|pdσx+
∑

‖α‖=k−1

∫

∂Ω

∫

∂Ω

|Dαg (x)−Dαg (y) |p

|x− y|n+p−2
dσxdσy





1
p

+γ2





∑

‖α‖=k−1

∫

∂Ω

|f |pdx





1
p

The constants γ1 and γ2 are from the mapping properties of ξ∂Ω, ζΩ and τ . �

Proposition 8. Let f ∈W k,p (Ω, Cln). Then the second order elliptic BVP

(4.2)







−∆u = f in Ω
τDu = g1 on ∂Ω
τu = g2 on ∂Ω

has a solution given by

u = ξ∂Ω (g2) + ζΩξ∂Ω (g1) + ζΩ ◦ ζΩ (f)

in W k+2,p (Ω) with

g1 ∈ W k+1− 1
p
,p (∂Ω) , g2 ∈W k+2− 1

p
,p (∂Ω)
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Proof. As f ∈W k,p (Ω, Cln), the solution u is in the Sobolev spaceW k+2,p (Ω) and
hence

τu = g2 ∈W k+2− 1
p
,p (∂Ω)

But then Du is in W k+1,p (Ω) and hence

τDu = g1

is in the Slobodeckij space W k+1− 1
p
,p (∂Ω).

The solution u of the BVP is obtained by repeated application of the Borel-
Pompeiu formula by writing the Laplacian ∆ as −D2.

Now let us first determine the integer and fractional parts of indices k + 2 − 1
p

and k + 1− 1
p

as

[k + 2−
1

p
] = k + 1, {k + 2−

1

p
} = 1−

1

p

[k + 1−
1

p
] = k, {k + 1−

1

p
} = 1−

1

p

Therefore from the properties of the mappings studied above, we have a norm
estimate of the solution u inW k+2,p (Ω) in terms of norms of f , g1 and g2 as follow:

‖u‖Wk+2,p(Ω) = ‖ξ∂Ω (g2) + ζΩξ∂Ω (g1) + ζΩ ◦ ζΩ (f) ‖Wk+2,p(Ω)

≤ γ1





∑

‖α‖≤k+1

∫

∂Ω

|Dαg2|
pdσx +

∑

‖α‖=k+1

∫

∂Ω

∫

∂Ω

|Dαg2 (x)−Dαg2 (y) |
p

|x− y|n+p−2
dσxdσy





1
p

+γ2





∑

‖α‖≤k

∫

∂Ω

|Dαg1|
pdσx +

∑

‖α‖=k

∫

∂Ω

∫

∂Ω

|Dαg1 (x)−Dαg1 (y) |
p

|x− y|n+p−2
dσxdσy





1
p

+γ3





∑

‖α‖≤k

∫

∂Ω

|Dαf |pdx





1
p

for some positive constants γ1, γ2 and γ3 that depend on p, n,Ω �

Proposition 9. For the BVP (4.1) there exist positive constants c, γ1 and γ2 such
that the solution u ∈W k,2n(Ω) satisfies the norm estimate:
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c−1



 sup
x,y∈Ω
x 6=y

|u (x)− u (y) |

|x− y|
1
2

+ ‖u‖C(Ω)





≤ γ1





∑

‖α‖≤k−1

∫

∂Ω

|Dαg|2ndσx+
∑

‖α‖=k−1

∫

∂Ω

∫

∂Ω

|Dαg (x) −Dαg (y) |2n

|x− y|n+p−2
dσxdσy





1
2n

+γ2





∑

‖α‖=k−1

∫

∂Ω

|f |2ndx





1
2n

Proof. From the Sobolev embeding theorems, if p > n, then

W k,p (Ω) →֒ C0,λ (Ω)

for 0 < λ ≤ 1− n
p
.

But then for p = 2n, we have 0 < λ ≤ 1
2 and thuerefore the solution u which is

in W k,2n (Ω) is contained in Hölder spaces C0,λ (Ω).

Thus ∃ c = c(p,n,Ω) > 0 such that

c−1‖u‖C0,λ(Ω) ≤ ‖u‖Wk,2n(Ω)

That is

c−1



 sup
x,y∈Ω
x 6=y

|u (x)− u (y) |

|x− y|λ
+ ‖u‖C(Ω)





≤ ‖u‖Wk,2n(Ω)

≤ γ1





∑

‖α‖≤k−1

∫

∂Ω

|Dαg|2ndσx+
∑

‖α‖=k−1

∫

∂Ω

∫

∂Ω

|Dαg (x) −Dαg (y) |2n

|x− y|n+p−2
dσxdσy





1
2n

+γ2





∑

‖α‖=k−1

∫

∂Ω

|f |2ndx





1
2n

Choosing λ = 1
2 , we have the required result. �
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