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The Dirac delta generalized function ¢ is described intutively as a distribu-
tion with the following properties:
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We can also see ¢ (z) as the a distributional derivative of a function called
Heavyside function given by:
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by looking at the equality :
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Indeed,
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On the other hand
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Therefore we conclude that
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in a sense of distributional or some times called weak derivative.

By taking distributional derivatives of h of all orders, we can see that the
Dirac delta distribution is differentibale infinitely many times as follows:
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which justifies ¢ exists as a distribution. Then for an arbitrary k € N, we claim

that
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the k — th distributional derivative of § exists from:
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Therefore § is infinitely differentiable generalized function and because there
is no a regular function that behaves as § does, it is called generalized function
or distribution.

Definition 1 The operator eds is defined as a differential operator of infinite

ced oo 1 dF
order by : edx =) ;= tia%
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Proof. Clearly e” is an infitely differentiable function and therefore,
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P ition 3 edr o = 3°0° O and e~ a6 = 0, (—1)" 220 qre distrib
roposition 3 ea=d = ) " % and e” @0 = )y~ (—1)" % are distribu-
tions.

Proof. Let ¢ € Cg° (R, R), then
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and in a similar argument, one can show
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with both sums Y 72 w“:!(o) and 30°  (—=1)™) % convergent to the values
eds 1) (0) and e~ 3= (0) respectively.
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Let o be a multi index with a = (a1, @, a3, ...) and
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be a partial differential operator. Let ¢p € C5° (R",R) be a function whose
compact support contains zero, then we can write the Taylor series of ¢ at 0 as
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for all x near 0 and by taking © — 1 = (1,1,...) of R™ we get
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Proposition 4 335 _, D22 and > iml=o (1) DS are distributions.

Proof. Let ¢ € C§° (R™,R), then

S0 s S (e DTG,
/R§|_j Sy @ - /Rnaug;o( 1y 22
=y 20

Similarly one can show that
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Proposition 5 €26 and e P8 are distributions with
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Proposition 6 Let F : C§° (R") — R be a distribution. Then DF , ePF and
eP" F are all distributions from C§° (R™) to R

Proof. The proofs follow in a similar argument made for the Dirac delta dis-
tribution . =



