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Dedicated to the Memory of our Dear Mother

Abstract. We introduce molli�ers in Cli¤ord analysis setting
and construct a sequence of C1�functions that approximates a

�regular function and also a solution to a non homogeneous BVP
of an in-homogeneous Dirac like operator in certain Sobolev spaces
over bounded domains whose boundary is not that wild. One can
extend the smooth functions upto the boundary if the domain has
a C1� boundary and this is the case in the paper as we consider
a domain whose boundary is a C2�hyper surface.

1. Introduction: Algebraic and Analytic Rudiments

Let 
 be a bounded domain in Rn whose boundary is a C2�hyper
surface and Cln be a 2n- dimensional Cli¤ord algebra generated by Rn
with an inner product that satis�es x2 = � k x k2.
Then for e1; e2; :::; en which are orthonormal basis of Rn , we have an

equality eij + eji = ��ije0 , with �ij , the Kronecker delta symbol and
e0, the identity element of the Cli¤ord algebra.

A Cln�valued function f de�ned in 
 has a standard representation
:

(1.1) f(x) =
X
A

eAfA(x); x 2 


where for each index set A; fA : 
! R is a real valued section of f .
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Such a function f is continuous, di¤erentiable, integrable, measur-
able, etc. over 
, if each section fA of f is respectively continuous,
di¤erentiable, integrable, measurable, etc. over 
.

Thus the usual function spaces, the Hölder spaces denoted byC�(
; Cln); Cm;�(
; Cln)
and the Sobolev spaces denoted by W p;k(
; Cln) for m; k = 0; 1; ::: and
1 < p <1, are de�ned as follows:

f 2 C�(
; Cln) i¤ fA 2 C�(
;R) where C�(
;R) is the space of all
functions f which are Hölder continuous with Hölder exponent � :

j f (x)� f (y) j� kf j x� y j�

for x; y 2 
 with norm given by :

kfkC�(
;R) =k f kC(
;R) + sup
x;y2

x6=y

j f (x)� f (y) j
j x� y j�

where kf is a positive constant which is speci�c to the particular func-
tion f .

For a very trivial fact, the Hölder exponent � should be in the interval
(0; 1], for otherwise, if � > 1; we have

j f (x)� f (y) j
j x� y j � kf j x� y j�

for some � > 0 and some positive constant kf .

When � = 1; the functions are called Lipschitz functions and these
functions have bounded derivatives over the domain 
.

Also, f 2 Cm;�(
; Cln) i¤ fA 2 Cm;�(
;R) where Cm;�(
;R) is
the space of functions f : 
 ! R which are m�times continuously
di¤erentiable and whose m�th derivative is Hölder continuous with
exponent � and with norm given by

k f kCm;�(
;R)=k f kCm�1(
;R) + k f (m) kC�(
;R)

= k f kCm(
;R) + sup
x;y2

x6=y

j f (m) (x)� f (m) (y) j
j x� y j�

Finally for p 2 [1;1); Sobolev spaces are de�ned in a similar way:
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f 2 W p;k(
; Cln) i¤ fA 2 W p;k(
;R) where W p;k(
;R) is the space
of real valued functions f de�ned over 
 which are locally p� integrable
over 
 and whose j� th distributional ( or weak) derivatives Djf with
j j j� k exist and are all p�integrable over 
 and norm in such a space
is de�ned as :

k f kW p;k(
;R)=

0@X
jjj�k

k Djf kpLp(
;R)

1Ap�1

Here, a locally integrable function f : 
! R is said to have a locally
integrable j� th order distributional (or weak) derivative over 
 if and
only if Z




Djf (x)� (x) d
x = (�1)jjj
Z



f (x)Dj� (x)

for all test functions � 2 C1c (
), and Dj =
nY
i=1

@ji

@x
ji
i

with j a

multi-index exponent such that
nX
i=1

ji = j.

Note here that W p;0(
; Cln) = Lp(
; Cln); the Lebesgue space of
p�integrable Cli¤ord valued functions and for a detail study of func-
tion spaces, one can refer [7, 8, 9, 13]

For p = 2, the Lebesgue space L2(
; Cln) becomes a Hilbert space
with a Cli¤ord-valued inner product given by

(1.2) hf; gi
 :=
Z



f(x)g(x)d


Introduce the in-homogeneous Dirac-operator with gradient poten-
tial 
 by:

(1.3) D
 :=

nX
j=1

ej

�
@

@xj
� 
j

�

where 
 =
Pn

j=1 ej
@
@xj
� ( with � 2 C1(
 ! R) linear) is called the

gradient potential of �
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De�nition 1. A function f 2 C1(
! Cln) is said to be left 
-regular
if D
f(x) = 0, 8x 2 
 and right 
-regular if f(x)D
 = 0.

An example of a function which is both left and right 
�regular over

 is given by

(1.4) 	�(x) :=
x

!nkxkn
e��(x)

where !n =
p
�n

�(n+22 )
is the surface area of the unit sphere in Rn.

The function given above is also called a fundamental solution (or
Cauchy kernel) for the in-homogeneous Dirac operator D


Proposition 1. Let 
 be a bounded, C2�domain in Rn and let g 2
W

2;k� 1
2

� (@
; Cln), k = 1; 2; :::. Then the

(1.5) BVP :

�
D
f = 0 on 

trf = g on @


has a solution f 2 W 2;k
� (
; Cln) given by

(1.6) f(x) =

Z
@


	�(x� y)�(y)g(y)d�y; x 2 


The theme here is to construct Cli¤ord valued C1� function g over

 that approximates the solution function f in the Hk (
; Cln)�
or W 2;k (
; Cln)

�
sense and also to approximate the solution of a

non homogeneous boundary value problem on Sobolev spaces based
at Lp (
; Cln) :

NHBVP :

�
D
f = h on 

trf = g on @


whose solution is given by : W p;k (
; Cln) 3 f = 	� �j@
 � (tr@
f) +
	� �j
 (D
f) and substituting tr
f = g and D
f = h on 
, where

g 2 W p;k� 1
p (@
; Cln) and h 2 W p;k�1 (
; Cln) where the result is given

in Proposition 6.

This is possible by constructing a smooth function g over any sub
domain � �� 
; where for each � > 0, we have that

kf � gkW 2;k
� (�;Cln)

< �
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and taking the supremum of such approximations over all such possible
sub domains as

sup
���


kf � gkW 2;k
� (�;Cln)

we get the result.

The smooth functions in general are constructed using molli�ers
which sooth locally or globally integrable functions in certain Sobolev
spaces and the notation � �� 
 read as "� is compactly contained
in 
 " is to mean that � is a subset of 
 whose compact closure � is
also contained in 
.

In [6] , the author constructed a family of functions which are called
minimal to approximate in the best way, such a 
�regular function
with �nitely many of these functions. For detail results, see the
reference therein.

2. Approximations with Smooth Functions

As I mentioned above, in [6] we construct Cln-minimal family of
functions in B2


(
; Cln) which are used for approximating solutions of
elliptic boundary value problems in the best way. The construction was
made by choosing dense points of some outer surface and de�ne a family
of functions from the fundamental solution 	� of the in-homogeneous
Dirac operator D
 with the selected points as the singular points of the
fundamental solution. We then re�ne these functions more by an or-
thogonalization like process. The approximating functions constructed
in this way were in the Sobolev space where the function to be approx-
imated belongs.

But what we intend to do here is that the same function which is
approximated by minimal family of functions can also be approximated
by smooth functions( in fact C1�functions ) over the domain 
.

We shall mention that the smooth approximation over the domain
is always possible as long as the function is integrable over the do-
main, and this approximation is extendable up to the boundary if the
boundary of the domain is a C1� hypersurface. Therefore, when the
domain is Lipschitz( minimal smoothness condition on the boundary),
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the approximating smooth functions may not be extendable up to the
boundary.

We therefore start with the notion of a molli�er. As a Cln�valued
function f has a general representation given by (1.1), we start with
mollifying a real valued function and then we extend that de�nition to
that of a Cli¤ord valued function.

Let 
 be a bounded domain with a C1�boundary, and for � be a posi-
tive constant, de�ne a sub domain
� of 
 by
� := fx 2 
 : dist (x; @
) > �g.
Let us also consider the function

(2.1) � (x) = � 0

B(0;1)
ke(kxk

2�1)
�1

which is a C1�function over Rn whose compact support is within
the unit ball B (0; 1) and we choose the constant k so that the integral
of � over the space Rn is a unit. The function � 0

B
is the characteristic

function of the interior of the unit ball B (0; 1).
Then for a function f : 
! R which is locally integrable, we de�ne

the convolution :

(2.2) f � (x) :=

Z



��n�

�
x� y

�

�
f (y) d
y

which is the convolution of the molli�er function �� with that of f
over the sub domain 
� where �� (x) = ��n� (��1x) is a C1�function
compactly supported in the ��ball centered at the origin. The above
function f � de�ned as f � := ���f is some times called a regularization
of f .

Lemma 1. The convolution function f � is a C1�function over the
��thick skin removed sub domain 
� and besides lim

�#0
f � = f in measure.

Proposition 2. (Cli¤ord Analysis version of a regularization)
For f =

P
A eAfA : 
 ! Cln and f �A := �� � fA, the regularization

f � =
X
A

eAf
�
A is C

1�over 
� and further more lim
�!0

 X
A

eAf
�
A

!
= f

Proof. For each index set A; fA is a real valued function from the
domain 
 and by the above lemma, the convolution f �A = �� � fA is a
C1�function over 
�. Then the Cli¤ord sum of such smooth functions
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:
X
A

eA (�� � fA) =: f � is a smooth function as well. Also by continuity,X
A

eA (�� � fA)!
X
A

eAfA as �! 0, that is f � ! f as �! 0. �

The following proposition is the main result of the paper.

Proposition 3. Let 
 be a bounded domain with a C1� boundary and
1 < p <1; f 2 W p;k(
; Cln) where, k = 0; 1; 2; :::. Then 8� > 0; there
exists a Cln� valued function 	 =

X
A

eA A over 
 which is C
1� up

to the boundary such that

k f �	 kW p;k(
[@
;Cln)< �

Proof. We �rst start with the Cli¤ord Analysis version of regularization
.
For a Cln�valued function f de�ned on 
 which is represented by
f(x) =

P
A eAfA(x), we construct locally integrable C

1�functions
from f as

(2.3) f � :=
X
A

eAf
�
A

where, for each A,
f �A = �� � fA

From the construction of the molli�ers ��, one can show that the
��wide section f � of the Cli¤ord valued function f is C1� function
over the sub domain 
� as each component function f �A is C

1� over

� and

lim
�#0

 X
A

eA (fA � ��)
!
= f =

X
A

eAfA

in measure over 
.

The next procedure is to look at how each R�valued component
function fA of theCln�valued function f is approximated byC1�functions
(for more information on this particular procedure, one can refer [9]).

The process is out lined next, where some kind of surgery on the
domain 
 is performed in order to construct smooth functions that will
approximate fA in terms of other smooth functions called partitions of
unity (refer [9] for details) and then we extend the result to work for a
Cln�valued function f .
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To explain exactly what is happening is that we cut o¤ each compo-
nent function which is in a Sobolev space that may have a singularity
of some order, by C1� functions which control the singularity and
sooth the function and then we patch the smooth sections to create
the needed C1� approximating functions.

Thus, for each i; (i = 1; 2; ::; ) construct sub domain
i := fx 2 
 : dist (x; @
) > i�1g

so that 
 =
1[
i=1


i and also consider the decomposition of the domain

in the following way: e
i = 
i+3 � 
i+1, and then pick a sub domaine
0 �� 
 so that 
 =
1[
i=0

e
i. Then for an R�valued component

function fA 2 W p;k (
) of the Cli¤ord valued function f and for any

partition of unity f�ig1i=0 associated to the open cover
ne
io1

i=0
of 
,

the function �ifA is compactly supported over e
i and furthermore, it
is in the Sobolev space W p;k (
;R).

Let us consider a � > 0 and choose a positive but small number �i
such that the convolution function �2i � (�ifA) =: gi has a compact
support in Vi := 
i+4 � 
i which contains e
i for i; (i = 1; 2; :::), and
that satis�es the inequality:

k gi � �ifA kW p;k(
;R)�
�

2i+1

for i = 0; 1; 2; :::.

Now let us consider the function  :=
1X
i=0

gi and we claim that  is

a C1-function over 
.

Indeed, for any open sub domain � �� 
, we have  m :=  p� =
mX
i=0

gi for some m 2 N, since � �� 
, we have that �cpct  
 so that

�nitely many of the sets from the cover fVigi of 
 covers �. Therefore,
for any set � �� 
 and for a section fA of f we have the inequality

k  j� � (fA)j� kjW p;k(
;R)=k
 1X
i=0

gi �
1X
i=0

�ifA

!
j�

kjW p;k(
;R)
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= k
1X
i=0

(gi � (�ifA))| {z }
�nite sum as ���


kjW p;k(�;R)

�
mX
i=0

k gi � (�ifA) kjW p;k(
;R)�
1X
i=0

�

2i+1
= �

where fA is represented by fA =
1X
i=0

�ifA.

Therefore, considering the sup
��


k  � fA kjW p;k(�;R) we have the

required result
k  � fA kjW p;k(
[@
;R)� �

That is, the smooth function  
�
= lim

m!1
 m = lim

m!1

�
 j�
��

approxi-

mates fA in the Sobolev space W p;k (
 [ @
;R).

Then since eachR� valued component function fA of theCln�valued
function f =

P
A eAfA is smoothly approximated over 
(= 
 [ @
)

by  A 2 C1 (
 [ @
;R), we have that 	 =
X
A

eA A approximates

the whole function f over 
 [ @
 which is 
: That is, we can make
k f �	 kW p;k(
[@
;Cln) as small as we please.

Therefore, for � > 0, and A an index set, from the above argument,
we can make a component-wise R�valued smooth approximation

k fA �  A kW p;k<
�p

2np

on 
 [ @
. The factor 2�n in the last inequality is related to the
cardinality of a basis of the Cli¤ord algebra Cln.

Then considering the functions 	 and f , with corresponding compo-
nent functions with the above corresponding sectional smooth approx-
imations, we have :

k f �	 kW p;k(
[@
;Cln)=k
X
A

eA(fA �  A) kW p;k(
[@
;Cln)

=

 X
A

(k fA �  A k
p
W p;k(
[@
;R))

!p�1
< �

�
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3. Applications

In this section, we see the application of the two methods we dis-
cussed above : approximation of a 
�regular function by minimal fam-
ily of functions and approximation of such a function by smooth func-
tions.

The application of the complete and minimal function systems that
we constructed in approximating null solutions of �rst order partial
di¤erential equations of the in-homogeneous Dirac operator is presented
in the following proposition.

Proposition 4. [6]Let 
 and g be as in proposition 2 . Then for
a given " > 0 and for a given left 
�regular function f given as a
solution of the BVP(1:5) in proposition 2 , there exist Cli¤ord numbers
�j(j = 1; :::n0) such that

kf �
n0X
j=1

	�j �jkW 2;k
�;Cln

< "

on 
.

Proof. Since the system f	�m (x) :=
(x�xm)

!nkx�xmkn e
��(x�xm)gm isCln-complete

in the space of left 
-regular functions which are in W 2;k
� (
; Cln) ,

where fxmgm is a dense subset of some outer hypersurface �out of the
domain 
 such that dist (�out; @
) � � > 0 , the solution f of the
BVP(1:5) in proposition 2, can be approximated with �nitely many
elements of f	�mgm . That means, 9�j 2 Cln (j = 1; :::; n0) such
that the above approximation inequality holds. The Cli¤ord numbers
�j(j = 1; :::n0) are determined by solving a system of equations ob-
tained from the boundary conditions

tr�

n0X
j=1

	�j �j(yi) = g(yi)

for each i = 1; :::; n0, where fyi : i = 1; :::; n0g is a set of unisolvent
points selected on � as in proposition 9. �

Then a best approximation of the above solution can be obtained
from the minimal functions.

Corollary 1. [6]Using the Cln� minimal functions f�kgk, the solution
f given by equation (1:6) of the BVP (1:5) is approximated in the best
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way in B(n0) = span
Cln

�
f�jgn0j=1

�
as

k f �
n0X
j=1

�j�j kW 2;k
�
< "

with �j (j = 1; :::; n0) determined as in proposition 11.

The next proposition gives the smooth approximation of a null solu-
tion of the in homogeneous Dirac operator which is in a certain Sobolev
space.

Proposition 5. Let 
 and g be as in proposition 2 . Then for a
given " > 0 and for a given left 
�regular function f given in (1:6)
as a solution of the BVP (1:5) in proposition 2, there exists a C1�
function 	 =

X
A

eA A over 
 [ @
 such that

k f �	 kjW 2;k
� (
[@
;Cln)< ":

Proof. The analytic solution of the BVP(1:5) is given by a bound-
ary integral (1:6) and this boundary integral which is also written as
f = F@
 (g) = F@
 (tr@
f) puts the solution in to the Sobolev space
W 2;k (
; Cln).

This is because the trace operator as a sharpening operator ( that
reduces smoothness in this case by a 1

2
) has the property :

tr@
 : W
2;k (
; Cln)! W 2;k� 1

2 (@
; Cln)

and the @� integral as a left inverse of the tr@
�operator as a mapping
where the argument is a 
�regular function, is a smoothening operator
with the property :

F@
 =

 
	� �|{z}

convolution

� (�)
!
j@


: W 2;s (@
; Cln)! W 2;s+ 1
2 (
; Cln)

where, � is the unit normal vector function de�ned on the boundary
of 
.

But in general, the two operators, @�integral and tr@
� are inverses
of each other in terms of preserving regularity, not as function trans-
formations.
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Therefore, the solution function f which is Cln�valued can be writ-
ten as

f =
X
A

eAfA, with

fA :=

�Z
@


	�(x� y)�(y)g(y)d�y

�
A

the A�component of f .

But then as above, there exists a corresponding smooth Cli¤ord val-
ued function  A so that for � > 0, we have

k fA �  A kW 2;k(
[@
;R)�
�2

22n

Therefore, by taking 	 as the Cli¤ord sum of the component func-
tions  A, we have the following inequality:

k f �	 kW 2;k(
[@
;Cln)=k
X
A

eA (fA �  A) kW 2;k(
[@
;Cln)

�
X
A

�

2n
< �

�

Interestingly enough, the smooth approximation works to BVPs which
have non-vanishing Dirac derivatives over the domain, unlike the mini-
mal family approximation which we have only for 
�regular functions
with a non vanishing trace.
We therefore give this result in the following proposition.

Proposition 6. Let 
 be a bounded domain in Rn whose boundary is a
C2� hyper surface and let g 2 W 2;k�1 (
; Cln) ; h 2 W 2;k� 1

2 (@
; Cln) ;
then the:

NHBVP :

�
D
f = g, on 

trf = h; on @


has a solution f which is in the Sobolev space W 2;k (
; Cln) given by

f (x) =

Z
@


	� (x� y) v (y)h (y) d@
x +

Z



	� (x� y) g (x) d
x
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and therefore there exists a sequence f'mg
1
m=1 � C1 (
 [ @
; Cln)

such that for � > 0;9n0 2 N 3

k'k�

0@Z
@


	� (x� y) v (y)h (y) d@
x +

Z



	� (x� y) g (x) d
x

1A kW 2;k(
[@
;Cln) < �

for all k � n0.

Proof. First, one can see that the 
� integral has the mapping prop-
erty:  

	� �|{z}
convolution

(�)
!
j


: W 2;k (
; Cln)! W 2;k+1 (
; Cln)

which is a smoothness augmentation by a one unlike the @� integral
which increases by a half.

Next, let

fA :=

0@Z
@


	� (x� y) v (y)h (y) d@
x +

Z



	� (x� y) g (x) d
x

1A
A

the A� Cli¤ord section of f .

Then fA : 
! R is in the Sobolev sectionW 2;k (
;R) and therefore,
9 a sequence

�
'A;j

	1
j=1

� C1 (
 [ @
;R) such that for � > 0, 9nA 2 N
such that for mA � nA , where mA 2 N, we have

k'A;mA
� fAkW 2;k(
[@
;R) <

�2

22n

Then for n0 := max fmA : A is an index setg and for k � n0, tak-
ing the Cli¤ord valued function given by 'k :=

X
A

eA'A;k which is

C1�over 
 [ @
, we have

kf � 'kkW 2;k(
[@
;Cln) = k
X
A

eA
�
fA � 'A;k

�
kW 2;k(
[@
;Cln)

�
X
A

�

2n
< �

that proves the proposition. �
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The next results focus on how far away are solutions of NHBVPs
stated in proposition 6, from space of monogenic functions or 
�regular
functions de�ned over the domain 
, if the input functions g and h are
C1� over the respective domains of de�nition. We �rst put Alexan-
der�s inequality for our purpose.

Proposition 7. (Alexander)Let f be a Cli¤ord valued C1- function
de�ned over a compact domain 
 in Rn+1.
Then

dist
C(
;Cln)

(f;M (
; Cln)) � �
�
� (
)(

1
n+1)

�
kDfk1

where, � is the volume measure in Rn+1 and k � k1 is the supremum
norm and M (
; Cln) is the set of Cli¤ord valued functions de�ned over

 which are annihilated by the Dirac di¤erential operator D.

From the above result of Alexander, we get the following important
inequality on solutions of NHBVPs.

Proposition 8. Let 
 be a compact domain in Rn+1 and g be a C1�function
over 
 and h also be C1�over @
. Then the solution to the NHBVP:�

D
f = g, on 

trf = h, on @


satis�es the inequality:

dist
C(
;Cln)

(f;M
 (
; Cln)) � �
�
� (
)(

1
n+1)

�
kgk1

where, M
 (
; Cln) is the set of Cli¤ord valued functions de�ned over

 which are annihilated by the Dirac like Di¤erential operator D
.

Proof. From Borel-Pompeiu relation, the solution to the NHBVP given
above is given by the following integral equation:

f =

Z
@


	� (x� y) �trfd@
 +

Z



	� (x� y)D
fd


Using the input functions given on the domain and on the boundary,
we have the solution function to be :

f =

Z
@


	� (x� y) �hd@
 +

Z



	� (x� y) gd
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Then by the inequality of Alexander, we have :

dist
C(
;Cln)

0@Z
@


	� (x� y) �hd@
 +

Z



	� (x� y) gd
;M (
; Cln)

1A � �
�
� (
)(

1
n+1)

�
kgk1

�

Remark 1. From the above inequality, one can see that if the domain is
of measure zero, then the solution is always approximated by monogenic
functions, as the indicated distance of the solution function from the
family of monogenic functions de�ned over 
 is zero for such a set.
Besides, if the input function g has a zero supremum norm then we
have also similar results.
But in a softer note, we see a very important relation between the

supremum norm of the input function g and how far is the solution
function away from monogenic functions. The thicker the supremum
norm of the input function, the farther away is the solution of the
NHBVP from being a monogenic function.
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