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Abstract

In this article we show an orthogonal decomposition of the Hilbert
space L2 (Ω) as L2 (Ω) = A2 (Ω) ⊕ d

dx

(
W 1,2

0 (Ω)
)
, define orthogonal

projections and see some of their properties. We display some decom-
position of elementary functions as corollaries.

Notations.

Let Ω = [0, 1]

⊕ : Set direct sum

� : Unique direct sum of elements from mutually orthogonal sets(
d
dx

)−2

0
: Inverse image of a second order derivative of a traceless function

A2 (Ω) = ker d
dx

∩ L2 (Ω) = {f :
∫
Ω

f 2dx < ∞ � (
d
dx

)
f = 0 on Ω}

‖ ∗ ‖ := ‖ ∗ ‖L2(Ω)

We define the following function spaces

Key words and phrases: Orthogonal Decomposition, Hilbert space,
Sobolev Spaces, Projections.
AMS (MOS) Subject Classifications: 46E30, 46E35.
ISSN 1814-0432, 2015, http://ijmcs.future-in-tech.net



28 D. A. Lakew

(I) The Hilbert space of square integrable functions over Ω

L2 (Ω) = {f : Ω −→ R, measurable and

∫
Ω

f 2dx < ∞}

(II) The Sobolev space

W 1,2 (Ω) = {f ∈ L2 (Ω) : f ′
w ∈ L2 (Ω)}

where f ′
w is a weak first order derivative of f, i.e,

∃g ∈ Lloc (Ω) : g = f ′
w

with ∫
Ω

gϕdx = −
∫
Ω

fϕdx,∀ϕ ∈ C∞
0 (Ω)

and

(III) the traceless Sobolev space

W 1,2
0 (Ω) = {f ∈ W 1,2 (Ω) : f(0) = f(1) = 0}

The Hilbert space L2 (Ω) is an inner product space with inner product

〈, 〉L2(Ω) : L2 (Ω) × L2 (Ω) −→ R

defined by

〈f, g〉L2(Ω) =

∫
Ω

f (x) g (x) dx

and W 1,2(Ω) with an inner product

〈f, g〉W 1,2(Ω) =
(〈f, g〉L2(Ω) + 〈f ′

w, g′
w〉L2(Ω)

) 1
2

where f ′
w, g′

w are weak first order derivatives.

Definition 1. For

f ∈ L2 (Ω) , ‖f‖L2(Ω) =
√
〈f, f〉L2(Ω)
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and for

f ∈ W 1,2 (Ω) , ‖f‖W 1,2(Ω) =
√
‖f‖L2(Ω) + ‖f ′

w‖L2(Ω)

With respect to the defined inner product above, we have the following
orthogonal decomposition

Proposition 1. (Orthogonal Decomposition)

L2 (Ω) = A2 (Ω) ⊕ d

dx

(
W 1,2

0 (Ω)
)

Proof. We need to show:

(i) A2 (Ω) ⊕ d
dx

(
W 1,2

0 (Ω)
)

= {0}

(ii) ∀f ∈ L2 (Ω) , ∃ a unique g ∈ A2 (Ω) and ∃ a unique h ∈ d
dx

(
W 1,2

0 (Ω)
)

such that
f = g � h.

Indeed

(i) Let f ∈ A2 (Ω) ∩ d
dx

(
W 1,2

0 (Ω)
)
.

Then

f ∈ A2 (Ω) =⇒ d

dx
f = 0

and so f is a constant. Also

f ∈ d

dx

(
W 1,2

0 (Ω)
)

and hence
∃h ∈ W 1,2

0 (Ω)

such that
f = h′
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But then as f is a constant we have

h = cx + d

But
trh = 0 on ∂Ω = {0, 1}

and hence
h (0) = 0 =⇒ d = 0

and
h (1) = 0 =⇒ c = 0

Therefore
h ≡ 0 and hence f ≡ 0.

∴ A2 (Ω) ∩ d

dx

(
W 1,2

0 (Ω)
)

= {0} (α)

(ii) Let f ∈ L2 (Ω). Then consider

ψ =

(
d

dx

)−2

0

(
d

dx

)
f

which is in W 1,2
0 (Ω) and let

g = f −
(

d

dx

)
ψ

Then

d

dx
g =

d

dx

(
f −

(
d

dx

)
ψ

)

=
d

dx
f − d2

dx2

((
d

dx

)−2

0

(
d

dx

)
f

)
= 0

Thus
g ∈ A2 (Ω)

and hence with

η =

(
d

dx

)
ψ ∈ d

dx

(
W 1,2

0 (Ω)
)
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we have
f = g � η (β)

From (α) and (β) the proposition follows.

Remark. The subset A2 (Ω) of L2 (Ω) is a closed set and its orthogonal
complement

d

dx

(
W 1,2

0 (Ω)
)

=
(
A2 (Ω)

)⊥
is closed as well.

In addition representation of elements in the Hilbert space L2 (Ω) is
unique; i.e.,

∀f ∈ L2 (Ω) ,∃ a unique g ∈ A2 (Ω) and a unique h ∈ d

dx

(
W 1,2

0 (Ω)
)

such that
f = g + h

which we denote it as
f = g � h

Definition 2. Due to the orthogonal decomposition there are two or-
thogonal projections

P : L2 (Ω) −→ A2 (Ω)

and

Q : L2 (Ω) −→ d

dx

(
W 1,2

0 (Ω)
)

with
Q = I − P

where I is the identity operator.

Proposition 2. ∀f ∈ L2 (Ω) we have

〈P (f) , Q (f)〉 = 0
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Proof. Let f ∈ L2 (Ω). Then

Pf ∈ A2 (Ω)

and so it is a constant and

Qf ∈ d

dx

(
W 1,2

0 (Ω)
)

and hence
∃ a unique h ∈ W 1,2

0 (Ω)

such that
Qf = h′ with trh = 0

Therefore

〈P (f) , Q (f)〉 = 〈P (f) , h′〉 =

∫
Ω

P (f)h′dx

Then from integration by parts we have∫
Ω

P (f)h′dx = −
∫
Ω

P (f)′hdx = 0

since P (f) ∈ ker d
dx

and we have no boundary integral that might have
resulted from the application of integration by parts because of the traceless
of h.

∴ 〈P (f) , Q (f)〉 = 0

Proposition 3. We have the following properties

(i) PQ = 0

(ii) P 2 = P

(iii) Q2 = Q
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That is P and Q are idempotent

Proof. Let f ∈ L2 (Ω) and let

g = Pf ∈ A2 (Ω)

Then g ∈ L2 (Ω) and let

ψ =

(
d

dx

)−2

0

(
d

dx
g

)
=

(
d

dx

)−2

0

(0)

Then ψ = 0 and setting

h = g − d

dx
ψ︸︷︷︸

‖
0

we have

g = h +
d

dx
ψ︸︷︷︸

‖
0

with
Pg = h and Qg = 0

Therefore,
Pg = P 2f = h = g = Pf

and
Qg = QPf = 0

Similarly let

η = Qf ∈ d

dx

(
W 1,2

0 (Ω)
)

Proof. Let f ∈ L2 (Ω). Then we have the unique decomposition,

f = Pf + Qf

But then

〈f, f〉 = 〈Pf + Qf, Pf + Qf〉
= 〈Pf, Pf〉 + 〈Qf,Qf〉



34 D. A. Lakew

That is
‖f‖2 = ‖Pf‖2 + ‖Qf‖2

We will look at few examples whose validity is supported from uniqueness
of representations in Hilbert spaces.

Corollary 1.

For f (x) = x ∈ L2 (Ω) we have

P (f) =
1

2
and Q (f) = x − 1

2
and hence

f (x) =
1

2
�

(
x − 1

2

)
Proof. Let

ψ = D−2
0 (Df) =

(
d

dx

)−2

0

(1) =
1

2
x2 − 1

2
x

with
d

dx
ψ = x − 1

2
and let

g = f − d

dx
ψ =

1

2
Then

d

dx
(g) =

d

dx

(
f − d

dx
ψ

)
= 0

and hence

f = g +
d

dx
ψ

as a direct sum. That is

f =
1

2
�

(
x − 1

2

)

Corollary 2. For f (x) = x

〈P (f) , Q (f)〉 = 0
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Proof. Indeed

〈P (f) , Q (f)〉 =

∫
Ω

1

2

(
x − 1

2

)
dx

=
1

2

(
x2

2
− x

2

)1

0

= 0

Corollary 3. ‖x‖2 = ‖1
2
‖2 + ‖x − 1

2
‖2

Corollary 4. For f (x) = x2

P (f) =
1

3
and Q (f) = x2 − 1

3

Proof. Let

ψ =

(
d

dx

)−2

0

(
d

dx
f

)
=

(
d

dx

)−2

0

(2x)

=⇒ ψ (x) =
1

3
x3 − 1

3
x

and let

g = f − d

dx
ψ

= x2 −
(

x2 − 1

3

)
=

1

3

and so

g ∈ ker
d

dx

and so

f = g � d

dx
ψ =

1

3
�

(
x2 − 1

3

)
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which signifies

P (f) =
1

3
and Q (f) = x2 − 1

3

with 〈
1

3
,

(
x2 − 1

3

)〉
= 0

Corollary 5. ‖x2‖2 = ‖1
3
‖2 + ‖ (

x2 − 1
3

) ‖2

Proposition 4. For the orthogonal projections P and Q we have the
following results

(i) xn = 1
n+1

� (
xn − 1

n+1

)
i.e.

P (xn) =
1

n + 1
, Q (xn) = xn − 1

n + 1

(ii) ex = (e − 1) � (ex + 1 − e)

i.e.,

P (ex) = e − 1, Q (ex) = ex + 1 − e

(iii) P (cos x) = sin 1, Q (cos x) = cos x − sin 1

so that

cos x = sin 1 � (cos x − sin 1)

(iv) P (sin x) = 1 − cos 1, Q (sin x) = sin x + cos 1 − 1

so that

sin x = (1 − cos 1) � (sin x + cos 1 − 1)

Proof of (iii). Let

ψ =

(
d

dx

)−2

0

(
d

dx
cos x

)
= sin x − (sin 1) x
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=⇒ d

dx
ψ (x) = cos x − sin 1

Then set

g = f − d

dx
ψ = sin 1 ∈ ker

d

dx

Thus
cos x = sin 1 � (cos x − sin 1)

and hence

P (cos x) = sin 1 and Q (cos x) = cos x − sin 1

Corollary 6.

(i) ‖xn‖2 = ‖ 1
n+1

‖2 + ‖xn − 1
n+1

‖2

(ii) ‖ex‖2 = ‖e − 1‖2 + ‖ex + 1 − e‖2

(iii) ‖ cos x‖2 = ‖ sin 1‖2 + ‖ cos x − sin 1‖2
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