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Abstract The main aim of this article is to study the hypercomplex π -operator over
C

n+1 via real, compact, n + 1-dimensional manifolds called domain manifolds. We
introduce an intrinsic Dirac operator for such types of domain manifolds and define an
intrinsic π -operator, study its mapping properties and introduce a Clifford–Beltrami
equation in this context.
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1 Introduction

The π -operator is one of the tools used to study smoothness of functions and to solve
some first order non-linear partial differential equations such as the Beltrami equa-
tion over domains in C. The first attempt to generalize the π -operator using Clifford
algebras was made by Shevchenko in 1962. It was Spröessig [9] who introduced the
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π -operator over domains in R
n+1 and developed some of its properties. Later it was

re-introduced in a more general way by Shapiro and Vasilevski in 1992 [8]. See also
[1,2,4] and elsewhere.

In [9], the Clifford π -operator is defined as the Clifford conjugate of the Dirac
derivative of the Clifford valued Cauchy–Teodorescu transform. We shall adapt this
definition to define a hypercomplex π -operator over domain manifolds in C

n+1. While
the term “domain manifold” arises in different contexts in mathematics such as in the
context of variational problems in pde and in works on Kahler manifolds the domain
manifolds used here the same as those described in [5–7] and elsewhere. These are
real, compact, n + 1-dimensional manifolds lying in C

n+1. Any bounded domain in
R

n+1 with its boundary is an example of a domain manifold. Further, basic homotopy
arguments are presented in [6] to show that there is an infinite abundance of many
other domain manifolds lying in C

n+1.
Such manifolds can be used to generalize Clifford analysis in R

n+1 to an analysis
in C

n+1. This is done by defining an intrinsic Dirac operator for a domain manifold.
This is done in [7]. Each domain manifold has a cell of harmonicity associated to it,
see [6]. Cells of harmonicity are special types of domains in C

n+1. These domain
manifolds allow one to extend Clifford analysis to these cells of harmonicity. See for
instance [5–7].

It is known that in Euclidean spaces, the π -operator is an operator of Calderon–
Zygmund type. In this article, we study the generalized hypercomplex π -operator over
domain manifolds in C

n+1 and get some new and analogous results such as mapping
properties, representation of it in terms of an integral and find spaces where it is invert-
ible. Finally, we briefly look at the Clifford–Beltrami equation over domain manifolds
and its solvability using the intrinsic π -operator.

2 Preliminaries

Let e1, e2, . . . , en be orthonormal basis for R
n . Consider the real 2n-dimensional

Clifford algebra Cln generated by the anticommutation relationship ei e j + e j ei =
−2δi, j e0 where e0 is the identity of the algebra. It has as a basis

e0, e1, e2, . . . , en, . . . , e j1 , . . . , e jr , . . . , e1e2, . . . , en

with j1 < j2 < · · · jr ≤ n. Thus each element of the algebra is represented in
the form: a =

∑
A⊂{1,...,n} aAeA, where the aA’s are real numbers. In this regard

every element x of R
n+1 can be identified with an element

n∑
j=0

x j e j of Cln and

therefore we have an embedding R
n+1 →֒ Cln . We also define the Clifford con-

jugate of a =
∑

A⊂{1,...,n} aAeA ∈ Cln as
∑

A⊂{1,...,n} aAeA, where e j1 , . . . , e jr =
(−1)r e jr , . . . , e j1 . We denote the conjugate of a by a.

Definition 1 For an element a =
∑

A aAeA ∈ Cln , we define its Clifford norm by
‖a‖2

0 = aa0 where aa0 is the real part of aa.
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The norm defined above satisfies ‖ab‖0 ≤ c(n)‖a‖0‖b‖0, where c(n) is a dimen-
sional constant. Every element x of R

n+1\{0} is invertible with inverse x−1 = x
‖x‖2 .

We can complexify the real Clifford algebra Cln to get the complex Clifford algebra
Cln(C). It has complex dimension 2n . A typical element of this algebra is of the form:

Z = e0z0 + e1z1 + e2z2 + · · · + enzn + · · · z j1,..., jr e j1,..., jr . . . + e1,...,nz1,...,n,

where

z j = x j + iy j , ( j = 0, 1, . . . , n) , . . . ,

z j1 j2,..., jr = x j1 j2,..., jr + iy j1 j2,..., jr , . . . ,

z1,...,n = x1,...,n + iy1,...,n,

where x0, . . . , y1,...,n ∈ R. Here again every element Z = (z0, z1, z2, . . . , zn) of C
n+1

is identified with the element
∑n

j=0 z j e j of Cln(C). Therefore once again we have

an embedding: C
n+1 →֒ Cln(C). For Z = X + iY ∈ Cln(C), X, Y ∈ Cln(R) with

‖X‖2
0 := x2

0 + x2
1 + · · · + x2

1,...,n , ‖Y‖2
0 := y2

0 + y2
1 + . . . y2

1,...,n , we define the norm

of Z as: ‖Z‖Cln(C) :=
√

2n+1(‖X‖0 + ‖Y‖0), see [5].
Unlike the case in the real Clifford algebra where non-zero elements are invert-

ible, not all non-zero elements are invertible here in Cln(C). For instance the element
z = e0 +

√
−1e j , ( j = 1, . . . , n) of Cln(C) is a zero divisor in the algebra and hence

not invertible.

Definition 2 [7] For w∈ C
n+1, define the null cone at w to be the set{z ∈ C

n+1 : (z −
w)(z − w) = 0} and denote it by N (w). In particular, N (0) = {z ∈ C

n+1 : zz = 0}.

Definition 3 For a domain � ⊆ C
n+1, a holomorphic function f : � → Cln(C)

is called a complex left monogenic function if �n
j=0e j

∂ f
∂z j

= 0 on �. So f satisfies

the equations ∂ f
∂z j

= 0 for j = 1, . . . , n and �n
j=0e j

∂ f
∂z j

. Similarly such a function is

called complex right monogenic if
∑n

j=0
∂ f
∂z j

e j = 0 on �. The differential operator
∑n

j=0 e j
∂

∂z j
is called the complex Dirac operator and it is denoted by DC.

An example of a function which is both left and right complex monogenic is �(z) =
1
ωn

z

(zz)
n+1

2
for z /∈ N (0) and n odd. Here ωn is the surface area of the unit sphere in

R
n+1. In this article, we shall assume that n is odd.

Definition 4 [7] A compact real, n + 1-dimensional C1-manifold M lying in C
n+1 is

called a domain manifold if for all z ∈ M :

1. N (z) ∩ M = {z}
2. N (z) ∩ T Mz = {z}, where T Mz is the tangent space to the manifold M at the

point z.

In [5,7] and elsewhere, it is shown that many aspects of real Clifford analysis are
carried through to C

n+1 via domain manifolds.
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Definition 5 [7] Suppose M ⊆ C
n+1 is a domain manifold. Then the component of

C
n+1\ ∪z∈∂ M N (z) containing int(M) is called a cell of harmonicity of M and it is

denoted by M+.

If M is a domain manifold then its cell of harmonicity M+ is a domain in C
n+1.

Definition 6 [7] Suppose M is a domain manifold. Then M is called a simple domain
manifold if for each w ∈ M , there exist C1-functions ϕ j,w : (− 1

2 , 1
2 ) → M , with

( j = 0, . . . , n) such that

1. ϕ j,w is one to one.
2. ϕ j,w(0) = w

3. ϕ j,w(t) = w + λ j (t)e j where λ j (t) ∈ C.

Examples of simple domain manifolds include bounded domains in R
n+1. It is

a simple matter to construct other nontrivial examples of simple domain manifolds.
One can for instance take the closure of a bounded domain in R

n+1 and consider all
line segments in that set parallel to the x j direction. Now one takes the same small
homotopic deformation of these line segments in the complex planes parallel to the
complex plane containing e j . If the homotopy deformation is sufficiently small one
obtains a simple domain manifold. See [7] for details.

The existence of the kind of paths given in Definition 6 enables one to define an
intrinsic Dirac operator over domain manifolds in the following way.

Definition 7 [7] Let M be a simple domain manifold. Then for a C1-function f :
M → Cln(C), the intrinsic Dirac derivative of f on M is defined as

DM f (w) := lim
t→0

n∑

j=0

e j

f (ϕ j,w(t)) − f (ϕ j,w(0))

λ j (t)
.

If f is the restriction to M of a holomorphic function f +, then DM f = DC f |+int(M)
.

Definition 8 On a simple domain manifold, M , we define the Bergman space of
p-integrable functions as a right complex Clifford algebra module B p(M, Cln(C)) :=
{ f : M+ → Cln(C) : f ∈ L p(M, Cln(C)) and DC f = 0} where p ∈ (1,∞).

We next define three important integral transforms over such domains lying in
C

n+1.

Definition 9 [5,7] Let M be a simple domain manifold and let f : M → Cln(C) be
a C1 function. Then the usual integral transforms are defined on M as follows

1. ζM f (w) :=
∫

M
�(z − w) f (z)dzn+1, w ∈ M

2. ξ∂ M f (w) :=
∫
∂ M

�(z − w)Dz f (z) , w /∈ ∂ M

3. ξ ′
∂ M f (w) := 2P.V .

∫
∂ M

�(z − w)DZ f (z), w ∈ ∂ M

Here dzn+1 is the differential form dz0 ∧ · · · ∧ dzn , Dz = �n
j=0(−1) j e j d̂z j with

d̂z j = dz0 ∧· · ·∧dz j−1 ∧dz j+1 ∧· · ·∧dzn . Further �(z −w) = 1
ωn

z−w

((z−w)(z−w))
n+1

2
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is the Cauchy kernel of the intrinsic Dirac operator defined over the domain mani-
fold. As in real Clifford analysis, the integral transform given in (1) is the Teodorescu
transform or Cauchy transform.

Theorem 2.1 [7] Suppose M is a domain manifold and f : M → Cln(C) is a C1 func-

tion with compact support then for all w ∈ int(M), we have: DMζM f (w) = f (w).

Remark 1 One can see that if a C∞-function ψ : M → Cln(C) has compact support,
then the Teodorescu transform and the intrinsic Dirac operator are inverses of each
other from both the left and right. That is DMζMψ = ζM DMψ = ψ . See [5,7] for
further details.

In [5], it is shown that if f is the restriction to M of a holomorphic function then
ζM f extends to a holomorphic function in a neighborhood of M . If we denote the
holomorphic extension of f by F then we shall denote the holomorphic extension of
ζM f by ζ ⋆

M F .

Proposition 2.2 [7] For 1 < p < ∞, the Lebesgue space L
p
M (Cln(C)) has a direct

decomposition

L
p
M (Cln(C)) = B p(M, Cln(C)) ⊕ DM (W

p,1
0 (M, Cln(C)))

where ⊕ is a direct sum, and W
p,1

0 (M, Cln(C)) is a Sobolev space of Cln(C) valued

functions with compact support in M.

As usual the above decomposition gives us projection operators

PM : L p(M, Cln(C)) → B p(M, Cln(C))

and

QM : L p(M, Cln(C)) → DM (W
p,1

0 (M, Cln(C)))

with QM = IM − PM where IM is the identity operator on M .

Proposition 2.3 Let p ∈ (1,∞). Then for f ∈ L p(M, Cln(C)), there exists a func-

tion g ∈ W
p,1

0 (M, Cln(C)) such that DM f = �M g.

Proof From the direct decomposition result, if f is a p-integrable complexified
Clifford algebra valued function over the domain manifold M , then, f = PM f +QM f

where, PM is the Bergman projection operator and QM is its direct complement. Thus,

QM f ∈ DM (W
p,1

0 (M, Cln(C))), so there exists g ∈ W
p,1

0 (M, Cln(C)) such that

QM f = DM g and hence f = PM f + DM g. But PM f is a function in the Bergman
space B p(M, Cln(C)) and therefore it is annihilated by DM . Applying the intrinsic
Dirac operator on both sides of the last equality above we have the result. ⊓⊔
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3 The Intrinsic π -Operator in C
n+1

Here the generalized π -operator introduced in [9] is adapted to define an intrinsic
π -operator over simple domain manifolds.

Definition 10 Let M be a simple domain manifold and suppose f : M → Cln(C)

is a C1 function. The intrinsic hypercomplex π -operator on M , denoted by πM , is
defined as πM := DMζM , where

DMζM f (w) :=
n∑

j=0

e j lim
t→0

ζM f (ψ j,w(0)) − ζM f (ψ j,w(t))

λ j (t)
.

If the function f is a restriction of some holomorphic function f + on the domain
manifold M , then the above intrinsic hypercomplex π -operator will simply be

πM f =
n∑

j=0
e j

∂ζ ⋆
M f (z)

∂z j
.

Theorem 3.1 Suppose M is a simple domain manifold and f : M → Cln(C) is a C1

function. Then the singular integral

P.V .

∫

M

DC)�(z − w) f (z)dzn+1

is well defined for each w ∈ int(M).

Proof First suppose that C is a sub domain of M and w ∈ C . Then

P.V .

∫

M

DC�(z − w) f (z)dzn+1

=
∫

M\C

[DC�(z − w)] f (z)dzn+1 + P.V .

∫

C

DC�(z − w) f (z)dzn+1.

Now let us place f (z) equal to ( f (z) − f (w)) + f (w), and consider the integral
P.V .

∫
C

DC�(z−w)( f (z)− f (w))dzn+1. Now as f is a C1 function f (z)− f (w) =
D′ fw(z − w) + ǫ(w)(z − w) where D′ fw is the derivative of f at w. Consequently
there is a non-zero real number C(w) such that ‖ f (z) − f (w)‖ ≤ C(w)‖z − w‖. So

‖D�(z − w)( f (z) − f (w)‖ ≤ cC(w)
1

‖z − w‖n

for some c ∈ R
+. It follows that

∥∥∥∥∥∥
P.V .

∫

C

DC�(z − w)( f (z) − f (w))dzn+1‖ ≤ c′C(w)

∫

C

1

‖z − w‖n
‖dzn+1

∥∥∥∥∥∥
.

for some c′ ∈ R
+.
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Converting to polar coordinates we see that

∫

C

1

‖z − w‖n
‖dzn‖ ≤ c′′

R(w)∫

0

dr

for some c′′ ∈ R
+ and R(w) = sup{‖z − w‖ : z ∈ ∂C}. So ‖

∫
C

D�(z − w)( f (z) −
f (w))dzn+1‖ is finite.

Now let us consider the singular integral P.V .
∫

C
D�(z − w) f (w)dzn+1.

We now choose C to be sufficiently small so that it is a homotopic deformed of a
disc C ′ lying in T Mw and with center at w. From conditions 1 and 2 of the definition of
a domain manifold we know that such a deformation is possible and that the homotopy
avoids the null cone N (w) except at w. Further from [6] we know that this disc can be
homotopically deformed avoiding N (w)\{w} to the disc D(w, R) centered at w and
of radius R lying in R

n+1 + w.
D�(z − w) is homogeneous and the numerator of D�(z − w) is a second order

harmonic polynomial. Consequently
∫

D(w,R)
D�(z − w) f (w)dxn+1 = 0. Elemen-

tary continuity and homogeneity arguments now tell us that if C is sufficiently small
then ‖P.V .

∫
C

D�(z − w) f (w)dzn+1 − P.V .
∫

D(w,R)
D�(z − w) f (w)dxn+1‖ < ǫ

for some ǫ ∈ R
+. The result follows. ⊓⊔

Following from this one can now deduce:

Theorem 3.2 Suppose M is a simple domain manifold and f : M → Cln(C) is a C1

function. Then

πM f (w) = P.V .

∫

M

D�(z − w) f (z)dzn+1 + n − 1

n + 1
f (w). (3.1)

Proof As in the previous theorem let us suppose that C is a sub domain of the manifold
M and that w ∈ C . Then

πM f (w) =
∫

M\C

DC�(z − w) f (z)dzn+1 + πC f (w).

As M , and C , are simple domain manifolds then for T sufficiently small the set
C j,t = {z + ϕ j,z(t)e j : z ∈ C} is a sub domain of M for t ∈ (0, T ) and j = 0, . . . , n.

Now consider

�n
j=0e j lim

t→0

1

t

⎛
⎜⎝

∫

C

�(z − w) f (z)dzn+1 −
∫

C j,t

�(z − w) f (z)dzn+1

⎞
⎟⎠.
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This limit evaluates to

−
∫

C

�n
j=0e j�(z − w) f ′

j (z)dzn+1 +
∫

∂C

Dz�(z − w) f (z)

where f ′
j (z) = limt→0

( f ((z+ϕ j,z(t))− f (z)

t
and Dz = �n

j=0(−1) j e j d̂z j . Now∫
C

�(z −w) f ′
j (z)dzn+1 is a weakly singular integral and we can choose C so that the

continuous function f ′
j is bounded on C . Consequently for each ǫ > 0 we can chose

C sufficiently small so that ‖
∫

C
�(z − w) f ′

j (z)dzn+1‖ < ǫ. So we are left with the

integral
∫
∂C

Dz�(z − w) f (z).

Now let us consider the integral
∫
∂C

Dz�(z − w) f (z). Again we place f (z) =
( f (z)− f (w))+ f (w). Again via continuity arguments and the degree of homogeneity
of �(z − w) we can choose C sufficiently small so that given ǫ > 0

∥∥∥∥∥∥

∫

∂C

Dz�(z − w)( f (z) − f (w))

∥∥∥∥∥∥
< ǫ.

In [6], it is shown that for n ≥ 2 the tangent space T Mw of a domain mani-
fold can be deformed homotopically to R

n+1 + w within C
n+1\N (w). Consequently

we may choose C so that it is a homotopy deformation of a rectangle R lying in
R

n+1 + w, centered at w with normal vectors ±e0, . . . ,±en and radius r . Now
limr→0 �n

j=0e j

∫
E j

�(z − w) f (w)d̂x j = n−1
n+1 f (w), where E j are the two faces

of ∂ R with normal vectors ±e j . Further for R sufficiently small the continuity and
degree of homogeneity of � tells us that for each ǫ > 0 we can choose C sufficiently
small so that

∥∥∥∥∥∥

∫

∂C

�(z − w) f (w)dσ(z) −
∫

∂ R

�(z − w) f (w)dσ(z)

∥∥∥∥∥∥
< ǫ

where σ are the Lebesgue measures of ∂C and ∂ R, respectively. The result follows.
⊓⊔

Suppose now that the function f appearing in the previous two theorems is the
restriction to M of a holomorphic function F(z) defined in a neighborhood of M . We
have previously observed that in this case there is a holomorphic function G defined in
a neighborhood of M satisfying G|M = ζM f We denote G by ζ ⋆

M F . Further from ear-

lier observations it may be determined that on this occasion πM f is equal to DCζ ⋆F

which is a holomorphic function. From Eq. 1 we now have:

Theorem 3.3 Suppose that M is a simple domain manifold and f : M → Cln(C) is

the restriction to M of a holomorphic function F(z) defined in an open neighborhood

of M. Then P.V .
∫

M
D�(z − w) f (z)dzn+1 is the restriction to M of a holomorphic

function defined in a neighborhood of M.



The Intrinsic π -Operator 279

4 Mapping Properties of the πM -Operator

We begin with:

Theorem 4.1 For M a simple domain manifold the operator πM is an isometry on

L2(M, Cln(C)), the space of square integrable Cln(C) valued functions defined on

M.

Proof Suppose that f and g are C2 functions with compact support on int(M) with
values in Cln(C). Then define the inner product 〈 f, g〉 to be

∫
M

f (z)g(z)dzn+1. There-
fore, from this inner product we find that since f and g are C2 and have compact
support in int(M) then from [3,7] we know that ζM f and ζM g can be replaced by
ζM f − F1 and ζM g − F2 where F1 and F2 are complex left monogenic functions in
a neighborhood of int M , F1 = ζM f on ∂ M and F2 = ζM g on ∂ M . Consequently

〈πM f, πM g〉M = 〈ζM f, DM DMζM g〉M .

As DM DM = DM DM

〈ζM f, DM DM g〉 = 〈ζM f, DM g〉.

Again as f and g are continuously differentiable and have compact support in int(M)

〈ζM f, DM f 〉 = 〈DMζM f, g〉 = 〈 f, g〉.

A density argument now gives the result. ⊓⊔

Let B
2
(M, Cln(C)) denote the space of conjugates of elements of the Bergman

space B2(M, Cln(C)). Then we have :

Proposition 4.2 For M a simple domain manifold

πM : B
2
(M, Cln(C)) → B2(M, Cln(C)).

Outline of proof The result follows from noting that DMζM f = f and DM DM =
DM DM . ⊓⊔

Similarly πM : B2(M, Cln(C)) → B
2
(M, Cln(C)).

A similar and simple calculation also reveals that π MπM f = f and πMπ M f = f

whenever f ∈ DM (W
2,1
0 (M, Cln(C).

5 The Clifford–Beltrami Equation

We conclude by briefly discussing an analogue of the Beltrami equation in the con-
text we have described here. The classical Beltrami equation ∂ f

∂z
− q

∂ f
∂z

= 0, where
f, q : � ⊂ C → C are some measurable functions with ‖q‖ < 1, has been studied by
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many authors. This equation can also be studied in the higher dimensional complex
space C

n+1 via domain manifolds by considering the intrinsic Dirac operator DM . In
this setting we have a Clifford–Beltrami equation.

Definition 11 Let M be a simple domain manifold and let q : M → Cln(C) be a
measurable function. For f ∈ W 2,1(M, Cln(C)), the Clifford–Beltrami equation over
M is defined as

DM f = q DM f (5.1)

Equation (5.1) gives another integral equation given by f = ζM h + φ where
φ ∈ ker DM (M, Cln(C)) and h = q DMφ. Then applying the Clifford conjugate
Dirac operator on both sides of this last integral equation, we have DM f = DMζM h+
DMφ = πM h + φ̃, with φ̃ = DMφ. Therefore DM f = qπM h + qφ̃ with

h = qπM h + qφ̃ (5.2)

The solvability of Eq. (5.1) is equivalent to the solvability of Eq. (5.2). But Eq. (5.2)
can be studied by considering the map : h �→ qπM h on the Lebesgue space L2(M, Cln
(C)). Under the assumption that ‖q‖ < 1, we see that the above map is a contraction
and therefore it has a fixed point. That fixed point is the solution of (5.2). Therefore
from this solution h we get a solution to the Clifford–Beltrami equation. The solution
is f = ζMqπM h + ζMqφ̃ + φ with φ ∈ ker DM (M, Cln(C)). Therefore we can state
the following proposition.

Proposition 5.1 The Clifford–Beltrami equation (5.1) and Eq. (5.2) are equivalent.
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