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Computing higher order derivatives of a differentiable function is a several
steps process that we know from elementary calculus. In this note, we give a
theorem which is an analogue of a definition of the derivative we know interms of
a diffence quotient, for higher order derivatives. We give an example later to see
the validity of the theorem. First, a first order analouge of a difference quotient
for higher order is defined and a theorem of n'"-order derivative interms of the
ntP-order difference quotient is presented.

Definition 1 The n'"-order difference quotient of a function v is defined as :
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Theorem 2 (Dejenie A. Lakew) Let 2 be a non-empty open subset of R and
Y € CH) (Q,R). Then for zo € Q and Vn € N, the n'"—order derivative of 1

at xg denoted by 1/1(”) (z0) is given by a single expression:
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In particular, the second derivative of ¢ at xq therefore is given by :
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Example 3 For the function ¢ (x) = 2, we know that the second derivative
is : " (z) = 62

Then verifying the above theorem for the second order derivative we have:
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which is exactly we have at the begining.

This therem is very fundamental for computing higher order derivatives by
just evaluating a limit of one algebraic expression that has multiplicities of
the step size and involves some coefficients that are computed using binomial
expansions.



