A New Look at Higher Order Derivatives

By

Dejenie A. Lakew

Computing higher order derivatives of a differentiable function is a several steps process that we know from elementary calculus. In this note, we give a theorem which is an analogue of a definition of the derivative we know interms of a differce quotient, for higher order derivatives. We give an example later to see the validity of the theorem. First, a first order analouge of a difference quotient for higher order is defined and a theorem of n^{th} -order derivative interms of the n^{th} -order difference quotient is presented.

Definition 1 The n^{th} -order difference quotient of a function ψ is defined as :

$$h^{-n}\left(\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \psi(x_{0} + (n-k)h)\right) = \frac{\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \psi(x_{0} + (n-k)h)}{h^{n}}$$

where $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ is a binomial coefficient.

Theorem 2 (Dejenie A. Lakew) Let Ω be a non-empty open subset of \mathbb{R} and $\psi \in C^{(n+1)}(\Omega, \mathbb{R})$. Then for $x_0 \in \Omega$ and $\forall n \in \mathbb{N}$, the n^{th} -order derivative of ψ at x_0 denoted by $\psi^{(n)}(x_0)$ is given by a single expression:

$$\psi^{(n)}(x_0) = \lim_{h \to 0} h^{-n} \left(\sum_{k=0}^n \binom{n}{k} (-1)^k \psi(x_0 + (n-k)h) \right)$$

In particular, the second derivative of ψ at x_0 therefore is given by :

$$\psi^{(2)}(x_0) = \lim_{h \to 0} h^{-2} \left(\sum_{k=0}^2 \binom{2}{k} (-1)^k \psi(x_0 + (2-k)h) \right)$$
$$= \lim_{h \to 0} \left(\frac{\psi(x_0 + 2h) - 2\psi(x_0 + h) + \psi(x_0)}{h^2} \right)$$

Example 3 For the function $\psi(x) = x^3$, we know that the second derivative is : $\psi''(x) = 6x$

Then verifying the above theorem for the second order derivative we have:

$$\psi''(x) = \lim_{h \to 0} \left(\frac{(x+2h)^3 - 2(x+h)^2 + x^3}{h^2} \right)$$
$$= \lim_{h \to 0} \left(\frac{x^3 + 6x^2h + 12xh^2 + 8h^3 - 2x^3 - 6x^2h - 6xh^2 - 2h^3 + x^3}{h^2} \right)$$
$$= \lim_{h \to 0} \left(\frac{6xh^2 + 6h^3}{h^2} \right)$$
$$= \lim_{h \to 0} \left(\frac{h^2(6x+6h)}{h^2} \right)$$
$$= \lim_{h \to 0} (6x+6h)$$
$$= 6x$$

which is exactly we have at the beginnig.

This therem is very fundamental for computing higher order derivatives by just evaluating a limit of one algebraic expression that has multiplicities of the step size and involves some coefficients that are computed using binomial expansions.