This is my fifth posting in the thread :

Communications in Mathematics Teaching ( CMT) as a series :

This is a differential operator of even orders with infinite terms defined below

where D := %
Then as in my previous communications, we question the following:
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As my favorite example, let us consider the following:

Example 1: The natural exponential function: ¢ (z) = e*

Claim: D> (¢ (z)) = (z+ 1)+ (z—1).
Indeed,
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Example 2. Let ¢ (z) = 2°.Then
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But the expression we have at the end is precisely: & (z + 1) + & (z — 1)

Deeeveng(z) = E(z 4+ 1) +§(z—1)
In a similar way:

Lemma: For the monomial : £(z) = ™, D*v"¢(x) =& (x+ 1)+ & (z —1)
Proof of Lemma: Here one can show that :
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and the result follows.

Proposition: ¥V p(z)ep (x) , D*"p(x) = p(x + 1) + p(z — 1) , where p (x)
is the set of all polynomial functions in x

Congecture : YipeC™>® (I,R), D>V (z) = (z+1) + ¢ (x — 1)
Also for each positive integer k, consider the differential operator of the type:
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where D is the differential operator as above. Then we can write the
following interesting statement:
Conjecture: (YkeN) (VipeC™>® (I,R)), D7 """ (x) = o (z + k) + ¢ (z — k)
Note: One can show the validity of following results:

(1) D°eve" (sin(x)) = 2sinz cos 1
(it) D°>eve™ (cos(x)) = 2cosx cos 1



Remark: The differential operators I considered in four of my communica-
tions can have some sort of mapping properties. One can look at these things.

Next time I will bring some properties of the operators on trigonometric
functions. Who knows they might have some interesting relations.This is my
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where D is the differential operator as above. Then we can write the
following interesting statement:

Conjecture: (VkeN) (VipeC™>® (I,R)), D7 " (x) = ¢ (z + k) + ¢ (z — k)
Note: One can show the validity of following results:

(z) D°>eve" (sin(z)) = 2sinz cos 1



(i) D°oeve™ (cos(z)) = 2 cosx cos 1
Remark: The differential operators I considered in four of my communica-
tions can have some sort of mapping properties. One can look at these things.

Next time I will bring some properties of the operators on trigonometric
functions. Who knows they might have some interesting relations.



