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In differential equations class, we teach the Laplace transform as one of the
tools available to find solutions of linear differential equations of constant coef-
ficients. What we do in this note is to use a non-continous Laplace transform,
that generates sequential solutions which are polynomials in N or quotients of
such polynomials. We use the following definitions. For a R-valued sequence
fN—>R,

Definition 1 The discrete Laplace transform of f (n) is defined as

oo

La{f(n)}(s) := Z e " f(n), where s > 0.

n=0

Definition 2 The first order difference equation of a sequence f (n) is defined
as

Af(n):=f(n+1)—f(n)
Proposition 3 The first order discrete IVP: Af (n) =n, f(1) =1, has solu-
tion given by
n?—n

2

Proof. Taking the transform of both sides of the equation : £; {Af (n)} (s) =
Ly {n}, we get

f(n)=1+

o
(es = 1)*

Substituting the value f (1) = 1, and simplifying the expression we get,

(" =) la{f(n)}(s) = F(1) =

1 e’

+ .
e =1 (es—1)>°

ta{f ()} (s) =

Then taking the inverse transform we have the solution :




n2—n

=1+(n*xl)=1+

n

Here "+ " is the convolution operator. m

Proposition 4 The second order IVP: A2f (n) =mn, f(1) =1, Af (1) =2,
has solution given by :

f(n):2n—l+w.

Proof. First,
A (n)=AO(Af(n)=f(n+2)=2f(n+1)+ f(n)
and using the initial conditions we get:
Ly {DPf(n)}(s) = (€** —2e* +1) L {f (n)} (s) —e® — 1.

68

S

= (e = 1)° L {f (M)} (s) —e* — 1=

1 e’ e

2 + 2 + 4"
(es=1)"  (es=1)"  (ef—1)

Then taking the inverse transform and using convolutions, we get the solu-
tion as :

= La{f(n)}(s) =

f<n)=<1*1)+n+n<n+><n—2>

:2n71+n(n71)(n72).
6
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Proposition 5 (4 {1} (s) =s—1In(e* —1) fors>0.

Proof.

1 oo
{1} (s) = P Ze‘sn for s > 0.
n=1

)-u{z)o

iﬁd{i}(s)sln(esl).

Integrating both sides, we get

1n(es—1)—s:§: (-e;"

n=1

]
We now present discrete [VPs whose solutions are rational sequences in n.



Proposition 6 The discrete IVP : nAf(n) =1, f(2) =2, forn > 2
has solution given by:

n—1
1
=1 —.
n) —|—; T

Proof. Taking the transform of both sides of the equation, we have:

Latnisf (W)} (s) = .
But
Cafnsf ()} (5) = Lafnf (n 1) = nf ()} s)
= e lafnf ()} () — € {7 (W)} (5) ~ La{nf (m)} (s)
= (¢~ 1) afnf ()} (5) — *Calf ()} (5).
Thus,
(¢ = 1) afnf ()} — *la {f (W)} = .
Again,
Cafnf ()} (5) =~ {f (m)} (5).
Therefore,
d 1
(1) AT ) () €L T (W)} () =

which is an ordinary non-homogenious linear differential equation of first
order in s and writing it in standard form we have :

LLAT Y ()4 S la [ )} () =~y

whose solution for ¢4 {f (n)} (s) is given by 15 — =
Then taking the inverse transform , we have :

. 1 s—In(ef—1)
f(n)_édl{es—lJr es—1 }

:1+€d1{s—1n(es—1)}*€d1{651_1}

1 1
=1 —x1] =1+ — > 1.
—|—< *) ,;:k for n



Proposition 7 Forn > 2, the IVP : Af (n) = %, f(2) =2
has solution given by

n—1
F =1+ 5
k=1

Proof. Re-writing the difference equation as : nAf (n) = %, taking the trans-
form of both sides and using corollary 3.3 we get

e® s—In(e® —1)

LA ) () + =S lalf ()} (5) =~
Again solving for 4 {f (n)} (s), we have

1 1

es — 1 m/(s—ln(es—l))ds.
:>f(n)=l—édl{esl_l}*édl{/(s_ln(es_l))ds}

1 ly
:1-(1*<—n2>):1+2k2.
k=1

ta{f (n)}(s) =
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