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Abstract. In this short paper we de�ne a dicrete Lapace transform, list some
properties of it and solve some �rst and second order discrete di¤erential equa-
tions or simply called di¤erence equations whose solutions are polynomials of
integers or their quotients.

1.
X
-Transform: De�nition and Examples.

Laplace transform is one of the �ne tools available to solve linear di¤eren-
tial equations with constant coe¢ cients. In this short note, we introduce a

X
-

transform( or a discrete transform), develop some of its properties and see its ap-
plications in solving discrete di¤erential equations or simply di¤erence equations
of special types: di¤erence equations whose solutions are polynomials of positive
integers or their quotients. In the sequel, N denotes the set of all natural numbers,
R denotes the set of all real numbers and IVP stands for Initial Value Problem.

Definition 1. Let f : N ! R be a sequence and let s > 0. We de�ne the

discrete Laplace transform of f by `d ff (n)g (s) :=
1X
n=1

f (n) e�sn, provided the

series converges.

Example 1. `d f1g (s) = 1
es�1 for s > 0.

Example 2. `d fng (s) = es

(es�1)2 , s > 0. Indeed from the geometric series
1X
n=1

xn = x
1�x for j x j< 1, we have

1X
n=1

nxn = x

"
d

dx

1X
n=1

xn

#
=

x

(1� x)2
:
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Therefore,

`d fng (s) =
1X
n=1

ne�sn

=
es

(es � 1)2
:

Example 3. `d
�
n2
	
(s) = e2s+es

(es�1)3 . Here again, for �1 < x < 1 :

1X
n�1

n2xn = x

 
d

dx

 
x
d

dx

1X
n=1

xn

!!

=
x2 + x

(1� x)3
:

Hence

`d
�
n2
	
(s) =

1X
n=1

n2e�sn

=
e2s + es

(es � 1)3
:

By performing two operations one after the other: di¤erentiating and multi-

plying by x on
1X
n=1

xn = x
1�x for �1 < x < 1, we get the following results:

N
`d
�
n3
	
(s) =

e3s + 4e2s + es

(es � 1)4
N

`d
�
n4
	
(s) =

e4s + 11e3s + 11e2s + es

(es � 1)5
N

`d
�
n5
	
(s) =

e5s + 26e4s + 66e3s + 26e2s + es

(es � 1)6
N

`d
�
n6
	
(s) =

e6s + 57e5s + 302e4s + 302e3s + 57e2s + es

(es � 1)7

Problem 1. What is `d
�
nk
	
(s) for any k 2 N ?

2. Existence and some properties of the `d-transform.

Let f (n) : N ! R be a sequence such that j f (n) j� �es0n for � > 0, s0 > 0.

Then
1X
n=1

f (n) e�sn is absolutely convergent and hence is convergent. Therefore,

for such a sequence, the discrete Laplace transform `d ff (n)g (s) exists �nitely for
s > s0, since

j
1X
n=1

f (n) e�sn j�
1X
n=1

�e(s0�s)n =
�

es�s0 � 1 < +1
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for s > s0. From this, we conclude that sequences which are polynomials in n have
discrete Laplace transforms.

Lemma 1. `d and its inverse `�1d are both linear.

Proposition 1. (Transform of translate of a sequence). For k 2 N,

`d ff (n+ k)g (s) = eks`d ff (n)g (s)�
kX
i=1

f (i) e(k�i)s:

Proof. Let f : N! R be a sequence. Then

`d ff (n+ k)g (s) =
1X
n=1

f (n+ k) e�sn

=

1X
m=k+1

f (m) e�s(m�k)

= esk
1X

m=k+1

f (m) e�sm = eks
1X
m=1

f (m) e�sm �
kX
i=1

f (i) e(k�i)s

= eks`d ff (n)g (s)�
kX
i=1

f (i) e(k�i)s:

�

Corollary 1. `d ff (n+ 1)g (s) = es`d ff (n)g (s)� f (1).

Definition 2. Let f : N ! R be a sequence. The discrete derivative of of f
denoted

4f (n) := f (n+ 1)� f (n) :

Proposition 2. (Transform of of a discrete derivative of a sequence).

`d f4f (n)g (s) = (es � 1) `d ff (n)g � f (1) :

Proof.

`d f4f (n)g (s) =
1X
n=1

4f (n) e�sn =
1X
n=1

(f (n+ 1)� f(n)) e�sn

=
1X
n=1

f (n+ 1) e�sn �
1X
n=1

f (n) e�sn

= `d ff (n+ 1)g � `d ff (n)g

= (es � 1) `d ff (n)g (s)� f (1) :
�

Next we de�ne a discrete convolution operator on sequences which latter will
be useful in solving discrete initial value problems.
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Definition 3. Let f; g : N! R be two sequences . Then the discrete convolu-
tion of f and g denoted (f � g) (n) is de�ned by

(f � g) (n) :=
n�1X
k=1

f (k) g (n� k) :

Example 4. (1 � 1) = n� 1

Example 5. (n � 1) = n2�n
2

Example 6. (n � n) = n3�n
6

Proposition 3. (Transform of a discrete convolution).

`d f(f � g) (n)g (s) = `d ff (n)g `d fg (n)g :

Proof. From the product of the two series: 1X
n=1

anx
n

! 1X
n=1

bnx
n

!
=

1X
n=2

cnx
n

where cn =
n�1X
k=1

akbn�k, we have,

`d f(f � g) (n)g (s) =
1X
n=1

(f � g) (n) e�sn

=

1X
n=2

 
n�1X
k=1

f (k) g (n� k)
!
e�sn

=

 1X
n=1

f (n) e�sn

! 1X
n=1

g (n) e�sn

!
= `d ff (n)g `d fg (n)g :

�

Corollary 2. `d

(
n�1X
k=1

f (k)

)
(s) = s`dff(n)g

es�1 .

Proof. Follows from the fact that choosing g � 1, we have

(f � g) (n) = f (n) � 1 =
n�1X
k=1

f (k) :

Then taking the transform of both sides, we have the result. �

Proposition 4. For a sequence f : N! R,

`d fnf (n)g (s) = �
d

ds
(`d ff (n)g (s)) :
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Proof.
d

ds
(`d ff (n)g (s)) =

d

ds

1X
n=1

f (n) e�sn

=
1X
n=1

�
�nf (n) e�sn

�
= �`d fnf (n)g (s) :

�

Corollary 3. For k 2 N, `d
�
nkf (n)

	
(s) = (�1)k dk

dsk
`d ff (n)g (s).

Remark 1. By taking f � 1, we get the relation:

`d
�
nk
	
(s) = (�1)k d

k

dsk
`d f1g (s)

= (�1)k d
k

dsk

�
1

es � 1

�
:

3. Initial value problems of discrete di¤erential equations.

In this section we solve initial value problems of discrete di¤erential equations
using the discrete Laplace transform.

Proposition 5. The �rst order discrete IVP: 4f (n) = n, f (1) = 1, has
solution given by

f (n) = 1 +
n2 � n
2

:

Proof. Taking the transform of both sides of the equation : `d f4f (n)g (s) =
`d fng, we get

(es � 1) `d ff (n)g (s)� f (1) =
es

(es � 1)2
:

Substituting the value f (1) = 1, and simplifying the expression we get,

`d ff (n)g (s) =
1

es � 1 +
es

(es � 1)3
:

Then taking the inverse transform we have the solution :

f (n) = `�1d

(
1

es � 1 +
es

(es � 1)3

)

= 1 + (n � 1) = 1 + n
2 � n
2

:

Here "� " is the convolution operator. �

Proposition 6. The second order IVP: 42f (n) = n, f (1) = 1, 4f (1) = 2,
has solution given by :

f (n) = 2n� 1 + n (n� 1) (n� 2)
6

:
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Proof. First, 42f (n) = 4 (4f (n)) = f (n+ 2)�2f (n+ 1)+f (n) and using
the initial conditions we get:

`d
�
42f (n)

	
(s) =

�
e2s � 2es + 1

�
`d ff (n)g (s)� es � 1:

) (es � 1)2 `d ff (n)g (s)� es � 1 =
es

(es � 1)2

) `d ff (n)g (s) =
1

(es � 1)2
+

es

(es � 1)2
+

es

(es � 1)4
:

Then taking the inverse transform and using convolutions, we get the solution
as :

f (n) = (1 � 1) + n+ n (n� 1) (n� 2)
6

= 2n� 1 + n (n� 1) (n� 2)
6

:

�
Proposition 7. `d

�
1
n

	
(s) = s� ln (es � 1) for s > 0.

Proof. `d f1g (s) = 1
es�1 =

1X
n=1

e�sn for s > 0. Integrating both sides, we get

ln (es � 1)� s =

1X
n=1

�
�e

sn

n

�
= `d

�
�1
n

�
(s)

) `d

�
1

n

�
(s) = s� ln (es � 1) :

�
We now present discrete IVPs whose solutions are rational sequences in n.

Proposition 8. The discrete IVP : n4f (n) = 1, f (2) = 2, for n � 2

has solution given by: f (n) = 1 +
n�1X
k=1

1
k .

Proof. Taking the transform of both sides of the equation, we have:

`d fn4f (n)g (s) =
1

es � 1 :

But

`d fn4f (n)g (s) = `d fnf (n+ 1)� nf (n)g (s)

= es`d fnf (n)g (s)� es`d ff (n)g (s)� `d fnf (n)g (s)

= (es � 1) `d fnf (n)g (s)� es`d ff (n)g (s) :
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Thus,

(es � 1) `d fnf (n)g � es`d ff (n)g =
1

es � 1 :

Again,

`d fnf (n)g (s) = �
d

ds
`d ff (n)g (s) :

Therefore,

� (es � 1) d
ds
`d ff (n)g (s)� es`d ff (n)g (s) =

1

es � 1
which is an ordinary non-homogenious linear di¤erential equation of �rst order in
s. writing it in standard form we have :

d

ds
`d ff (n)g (s) +

es

es � 1`d ff (n)g (s) = �
1

(es � 1)2

whose solution for `d ff (n)g (s) is given by 1
es�1 �

ln(es�1)�s
es�1 . Then taking the

inverse transform , we have the solution to be :

f (n) = `�1d

�
1

es � 1 +
s� ln (es � 1)

es � 1

�
= 1 + `�1d fs� ln (es � 1)g � `�1d

�
1

es � 1

�

= 1 +

�
1

n
� 1
�
= 1 +

n�1X
k=1

1

k
for n > 1:

�
Proposition 9. For n � 2, the IVP : 4f (n) = 1

n2 , f (2) = 2

has solution given by f (n) = 1 +
n�1X
k=1

1
k2 .

Proof. Re-writing the di¤erence equation as : n4f (n) = 1
n , taking the trans-

form of both sides and using corollary 3:3 we get

d

ds
`d ff (n)g (s) +

es

es � 1`d ff (n)g (s) = �
s� ln (es � 1)

es � 1 :

Again solving for `d ff (n)g (s), we have

`d ff (n)g (s) =
1

es � 1 �
1

es � 1

Z
(s� ln (es � 1)) ds:

) f (n) = 1� `�1d
�

1

es � 1

�
� `�1d

�Z
(s� ln (es � 1)) ds

�

= 1�
�
1 �
�
� 1

n2

��
= 1 +

n�1X
k=1

1

k2
:
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