Some Exponentials of $D := \frac{d}{dx}$

By

Dejenie A. Lakew, Ph.D.¹

This work was done when I was at Virginia State University in 2008. I decided to send it for publication, because I thought it may motivate students, that looking the usual things differently, can generate totally different phenomenon. Indeed this note shows exactly that on the usual ordinary differential operator D defined by $D := \frac{d}{dx}$. What happens when we exponentiate D? . What different and interesting properties can this action generate on smooth functions?. What happens to those rules of differentiations of calculus? . To answer few of these curiosities, we start from the very definition of exponentiating D and extrapolate that to other varieties. I state results as examples and put some problems as exercises.

Definition 1
$$e^D := \sum_{n=0}^{\infty} \frac{D^n}{n!}$$
, $e^{-D} := \sum_{n=0}^{\infty} \frac{(-1)^n D^n}{n!}$

Therefore for a function $f \in C^{\infty} (I \subseteq \mathbb{R})$, where I is some open interval, we define the exponential derivative of f at a point $x \in I$ as follows:

Definition 2
$$e^{D}(f(x)) := \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}$$
, where $f^{(n)}(x) = D^{n}(f(x))$.

Let us see how the above definitions work for some infinitely differentiable functions.

Example 3 The function $f(x) = e^x$ is a C^{∞} -function over \mathbb{R} and

$$e^{D}\left(e^{x}\right) = e^{x+1}$$

Proof. From the definition

$$e^{D}(f(x)) = e^{D}(e^{x}) = \sum_{n=0}^{\infty} \frac{D^{n}(e^{x})}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{e^{x}}{n!} = e^{x} \sum_{n=0}^{\infty} \frac{1}{n!}$$

 $^{^1 \}rm Virginia$ Union University, Department of Mathematics & CS, Richmond, VA ~23220

But the infinite sum $\sum_{n=0}^{\infty} \frac{1}{n!}$ is *e*. Therefore,

$$e^{D}(e^{x}) = e^{x} \cdot e = e^{x+1}$$
.

Some more examples are given below.

Example 4 1. $e^{D}(e^{-x}) = e^{-x-1}$

2. $e^{-D}(e^x) = e^{x-1}$

Example 5 $e^{D}(\sin x) = \sin(x+1)$ **Proof.** The function $f(x) = \sin x \in C^{\infty}(\mathbb{R})$. Therefore,

 $=\sin x\cos 1 + \cos x\sin 1$

But

$$\sin x \cos 1 + \cos x \sin 1 = \sin(x+1)$$

and that proves the example. \blacksquare

Similar procedures will provide the following examples:

Example 6

Example 7 1. $e^{D}(\cos x) = \cos(x+1)$ 2. $e^{D}(x^{2}) = x^{2} + 2x + 1$ **Properties of** e^{D} :

1.
$$e^{D}(k) = k$$

2. $e^{D}(kf) = ke^{D}(f)$

3.
$$e^{D}(f+g) = e^{D}(f) + e^{D}(g)$$

Definition 8 Define the sine hyperbolic and cosine hyperbolic of D as :

$$\sinh D := \frac{e^D - e^{-D}}{2}$$

and

$$\cosh D := \frac{e^D + e^{-D}}{2}.$$

Example 9

- 1. $\sinh D(e^x) = \frac{(e-1)}{2}e^{x-1}$
- 2. $\sinh D(\sinh x) = \frac{e-1}{2e}\cosh x$
- 3. $\sinh D(\cosh x) = \frac{e^2 1}{2e} \sinh x$

Proof. Left as exercises.

Problem 10 Find the following hyperbolic derivatives:

- 1. $\cosh D(\sinh x)$
- 2. $\cosh D (\cosh x)$
- 3. $\cosh D(e^{-x})$

Problem 11 For the n^{th} degree polynomial : $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, find $e^D(p_n(x))$.

Other exponentials of D:

Definition 12 For $a\,(>0,\neq 1)\in \mathbb{R}$, define $a^D:=e^{D\ln a}$

Example 13 $a^{D}(e^{x}) = ae^{x}$ **Proof.** Using the above defined new derivative,

$$a^{D}(e^{x}) = e^{D \ln a}(e^{x}) = \sum_{n=0}^{\infty} \frac{(D \ln a)^{n} e^{x}}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(\ln a)^{n} D^{n} e^{x}}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(\ln a)^{n} e^{x}}{n!} = e^{x} \sum_{n=0}^{\infty} \frac{(\ln a)^{n}}{n!}$$

But the expression $\sum_{n=0}^{\infty} \frac{(\ln a)^n}{n!}$ is a and this proves the claim

One can easily show that $(a^D)^n (e^x) = a^n e^x$ Similarly, one can prove the following results.

Example 14 1. $2^{D}(e^{x}) = 2e^{x}$

2.
$$2^{-D}(e^x) = \left(\frac{1}{2}\right)^D(e^x)$$

Finally let us prove one more result:

Claim 15 $a^{D}(\sin x) = \sin(x + \ln a)$

Proof. Using again the definition above, we have

$$a^{D}(\sin x) = \sum_{n=0}^{\infty} \frac{(\ln a)^{n} D^{n}(\sin x)}{n!}$$

= $\sin x \left(\sum_{n=0}^{\infty} \frac{(-1)^{n} (\ln a)^{2n}}{(2n)!} \right) + \cos x \left(\sum_{n=0}^{\infty} \frac{(-1)^{n} (\ln a)^{2n+1}}{(2n+1)!} \right)$
= $\sin x \cos (\ln a) + \cos x \sin (\ln a)$
= $\sin (x + \ln a)$

Corollary 16 $e^{D}(\sin x) = \sin(x+1)$

Corollary 17 For $n \in \mathbb{N}$, $e^{nD}(\sin x) = \sin(x+n)$, where $e^{nD} = (e^D)^n$, the *n*-th power of the exponential derivative e^D .

Problems to look at: What is the action of e^D on products and quotients of functions? This is a good exercise to look at.