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This work was done when I was at Virginia State University in 2008. I de-
cided to send it for publication, because I thought it may motivate students,
that looking the usual things di¤erently, can generate totally di¤erent phenom-
enon. Indeed this note shows exactly that on the usual ordinary di¤erential
operator D de�ned by D := d

dx . What happens when we exponentiate D? .
What di¤erent and interesting properties can this action generate on smooth
functions?. What happens to those rules of di¤erentiations of calculus? . To
answer few of these curiosities, we start from the very de�nition of exponenti-
ating D and extrapolate that to other varieties. I state results as examples and
put some problems as exercises.

De�nition 1 eD :=
1X
n=0

Dn

n! , e
�D :=

1X
n=0

(�1)nDn

n! .

Therefore for a function f 2 C1 (I � R) , where I is some open interval ,
we de�ne the exponential derivative of f at a point x 2 I as follows:

De�nition 2 eD (f(x)) :=
1X
n=0

f(n)(x)
n! , where f (n)(x) = Dn(f(x)).

Let us see how the above de�nitions work for some in�nitely di¤erentiable
functions.

Example 3 The function f(x) = ex is a C1-function over R and

eD (ex) = ex+1

Proof. From the de�nition

eD(f(x)) = eD(ex) =
1X
n=0

Dn(ex)

n!

=
1X
n=0

ex

n!
= ex

1X
n=0

1

n!
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But the in�nite sum
1X
n=0

1
n! is e.

Therefore,
eD(ex) = ex:e = ex+1:

Some more examples are given below.

Example 4 1. eD (e�x) = e�x�1

2. e�D (ex) = ex�1

Example 5 eD (sinx) = sin (x+ 1)
Proof. The function f(x) = sinx 2 C1(R). Therefore,

eD(sinx) =

1X
n=0

Dn(sinx)

n!

= sinx
1X
n=0

(�1)n
(2n)!| {z }
k

cos 1

+ cosx
1X
n=0

(�1)n
(2n+ 1)!| {z }
k

sin 1

= sinx cos 1 + cosx sin 1

But
sinx cos 1 + cosx sin 1 = sin(x+ 1)

and that proves the example.

Similar procedures will provide the following examples:

Example 6

Example 7 1. eD (cosx) = cos (x+ 1)

2. eD
�
x2
�
= x2 + 2x+ 1

Properties of eD :

1. eD (k) = k

2. eD (kf) = keD (f)
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3. eD (f + g) = eD (f) + eD (g)

De�nition 8 De�ne the sine hyperbolic and cosine hyperbolic of D as :

sinhD :=
eD � e�D

2

and

coshD :=
eD + e�D

2
:

Example 9

1. sinhD (ex) = (e�1)
2 ex�1

2. sinhD (sinhx) = e�1
2e coshx

3. sinhD (coshx) = e2�1
2e sinhx

Proof. Left as exercises.

Problem 10 Find the following hyperbolic derivatives:

1. coshD (sinhx)

2. coshD (coshx)

3. coshD (e�x)

Problem 11 For the nth degree polynomial : pn (x) = anx
n + an�1x

n�1 +
:::+ a1x+ a0 , �nd eD (pn (x)).

Other exponentials of D :

De�nition 12 For a (> 0; 6= 1) 2 R , de�ne aD := eD ln a
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Example 13 aD (ex) = aex

Proof. Using the above de�ned new derivative,

aD(ex) = eD ln a(ex) =
1X
n=0

(D ln a)
n
ex

n!

=
1X
n=0

(ln a)
n
Dnex

n!

=
1X
n=0

(ln a)
n
ex

n!
= ex

1X
n=0

(ln a)
n

n!

But the expression
1X
n=0

(ln a)n

n! is a and this proves the claim

One can easily show that
�
aD
�n
(ex) = anex

Similarly, one can prove the following results.

Example 14 1. 2D (ex) = 2ex

2. 2�D (ex) =
�
1
2

�D
(ex)

Finally let us prove one more result:

Claim 15 aD (sinx) = sin (x+ ln a)

Proof. Using again the de�nition above, we have

aD (sinx) =
1X
n=0

(ln a)
n
Dn (sinx)

n!

= sinx

 1X
n=0

(�1)n (ln a)2n

(2n)!

!
+ cosx

 1X
n=0

(�1)n (ln a)2n+1

(2n+ 1)!

!

= sinx cos (ln a) + cosx sin (ln a)

= sin (x+ ln a)

Corollary 16 eD (sinx) = sin (x+ 1)

Corollary 17 For n 2 N, enD (sinx) = sin (x+ n), where enD =
�
eD
�n
, the

n-th power of the exponential derivative eD.

Problems to look at: What is the action of eD on products and quotients
of functions? This is a good exercise to look at.

4


