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This work was done when I was at Virginia State University in 2008. I de-
cided to send it for publication, because I thought it may motivate students,
that looking the usual things differently, can generate totally different phenom-
enon. Indeed this note shows exactly that on the usual ordinary differential
operator D defined by D := %. What happens when we exponentiate D?
What different and interesting properties can this action generate on smooth
functions?. What happens to those rules of differentiations of calculus? . To
answer few of these curiosities, we start from the very definition of exponenti-
ating D and extrapolate that to other varieties. I state results as examples and
put some problems as exercises.
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Therefore for a function f € C*° (I CR) , where I is some open interval ,
we define the exponential derivative of f at a point x € I as follows:
o]

Definition 2 e (f(x)) := Z %, where ) (z) = D"(f(z)).

n=0

Let us see how the above definitions work for some infinitely differentiable
functions.

Example 3 The function f(x) = e® is a C°-function over R and

6D (ex) — er+1

Proof. From the definition

P(f) = Pler) = 32 2T
= e® s 1
=2 =
n=0 n=0
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But the infinite sum Z % is e.
n=0
Therefore,
eP(e®) = e®.e = e

]
Some more examples are given below.

Example 4 1. el (e @) =e o7}
2. e P (e?) = e*!

Example 5 e? (sinz) = sin (z + 1)
Proof. The function f(x) =sinz € C*>°(R). Therefore,

eP(sinx) = Zi(sinx)
n!
n=0
RN O — (="
= smxngo (2n)! —|—cosmn¥0 (2n+1)!
N———

cos 1 sin 1

=sinxcosl+ coszsinl

But
sinzcosl+ coszsinl = sin(x + 1)

and that proves the example. m

Similar procedures will provide the following examples:

Example 6

Example 7 1. e? (cosz) = cos (z + 1)
2. eP (x2) =22 +22+1

Properties of e” :
1. eP (k) =k

2. e? (kf) = ke® (f)



3. eP (f+9)=e"(f)+e" (9)

Definition 8 Define the sine hyperbolic and cosine hyperbolic of D as :

sinh D :=

and

Example 9

1. sinh D (e*) = (egl)em’l

2. sinh D (sinhz) = <1 cosha

3. sinh D (coshz) = 622;1 sinh

Proof. Left as exercises. m

Problem 10 Find the following hyperbolic derivatives:
1. cosh D (sinh z)
2. cosh D (cosh )
3. cosh D (e™")

Problem 11 For the n'" degree polynomial : p, () = a,x™ + ap_12" ' +
vt a1z + ag , find eP (p, (z)).

Other exponentials of D :

Definition 12 Fora(>0,# 1) € R, define aP := ePne



Example 13 a? (e*) = ae®
Proof. Using the above defined new derivative,

D/ x\ _ Dlnays, x\ __ - (Dlna)ner
a”(e®)=e (e)fZOT

_ i (Ina)" D™e”

n!

n=0
B = (Ina)"e” o > (Ina)"
= X
n=0 n=0
oo
. (Ina)™ . . .
But the expression Z -1~ 18 a and this proves the claim m

n=0

One can easily show that (aD)n (e*) = a"e*
Similarly, one can prove the following results.

Example 14 1. 2P (&%) = 2¢®
- x D x
2. 270 (%) = (1)7 (e?)
Finally let us prove one more result:
Claim 15 a” (sinz) = sin (z + Ina)

Proof. Using again the definition above, we have

D <= (lna)" D" (sinz)
a” (sinz) = ZO o
- o (—1)" (Ina)™ = (=) (Ina)*"*
= sinzx <nz_0 2n)! + cosx ngo @n 1 1)
= sinzcos(Ina) + coszsin (Ina)
= sin(z +Ilna)
L]

Corollary 16 P (sinx) = sin (z + 1)

Corollary 17 For n € N, e"P (sinz) = sin (z +n), where e"? = (eD)n, the

n-th power of the exponential derivative eP.

Problems to look at: What is the action of e” on products and quotients
of functions? This is a good exercise to look at.



