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Abstract. In this paper, we construct γ-regular Cln-minimal func-
tion systems in W 2,k

Γ (Ω, Cln)∩kerDγ(Ω, Cln), the generalized Bergman
space of Cln-valued functions in the Sobolev space W 2,k

Γ (Ω) which
are used in the best way to approximate null solutions of the in-
homogeneous Dirac operator.

1. Introduction

Interpolations, approximations and integral transforms are methods used
to solve problems of linear and non-linear partial differential equations. To
this end, techniques of Clifford analysis play a very crucial role. The works
in [1], [2], [6], [7], [9] and [10] are some to mention. In [1] and [2] the
authors study elliptic boundary value problems over bounded and Liapunov
domains using Quaternionic and Clifford analysis. In [5], [6] and [7] we
work on elliptic boundary value problems over domains which are Lipschitz
and unbounded for the first order Dirac operator and over more smooth
domains for the higher order iterates of the Dirac operator. In [9] the
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author generalizes an existing function theory of the in-homogeneous Dirac
operator Dλ := D−λ which is studied by Z. Xu in [13], [14] to Dγ := D−γ
where,

γ =
n∑
j=1

ej
∂

∂xj
Γ, for Γ ∈ C1(Ω→ R)

and λ is some Clifford number. In this case, γ is called the gradient potential
of Γ. In [6], [7], we construct a family of left regular functions called Cln-
complete systems which are used to approximate null solutions of the Dirac
operator and in [4], we do for the in-homogeneous Dirac operator. The
theme of this paper is to construct an optimal family of γ-regular functions
called Cln-minimal family, from the Cln-complete systems constructed in
[4] which will give best approximations for left γ-regular functions in some
Sobolev spaces, which is not the case in the Cln-complete systems. But
first, we develop the necessary function theory for the in-homogeneous Dirac
operator (2.3). The Cauchy kernel that we use here for our work is given
by (see in [9])

ΨΓ(x− y) :=
(x− y)

ωn‖x− y‖n
e−(Γ(x)−Γ(y)) (1.1)

2. Preliminaries and function theoretic results

Let {ej : j = 1, . . . , n} be an orthonormal basis of Rn. Consider the
2n-dimensional Clifford algebra Cln generated from Rn equipped with a
negative inner product. Then we have the anti-commutation relationship
eiej + ejei = −2δije0, i, j = 1, 2, . . . , n, where δij is the Kronecker delta
symbol and e0 is the identity element of Cln. The set {eA}A⊆{1,... ,n}, with
eA = ei1 . . . eik , e{i} = ei, i = 1, . . . , n and e? = e0, are the basis of Cln.
Thus each element of the algebra is represented in the form: a =

∑
A aAeA,

where, aA’s are real numbers and then every element x = (x1, . . . , xn) of
Rn is identified with the element x =

∑n
k=1 xkek of the Clifford algebra. In

this way we have an embedding: Rn ↪→ Cln of the vector space Rn into the
algebra Cln. We also define the Clifford conjugate of a =

∑
A aAeA ∈ Cln

denoted by a as a =
∑

A aAeA , where eA = eik . . . ei1 , ej = −ej , e0 = e0,
j = 1, . . . , n.

Definition 2.1. For an element a =
∑

A aAeA ∈ Cln, we define its Clifford
norm by

‖a‖ =

(∑
A

a2
A

)1/2

.
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An important point of Clifford analysis is that each non-zero element
x ∈ Rn has an inverse

x−1 =
x

‖x‖2
.

This is Kelvin inversion up to a sign.
In what follows, Ω ⊆ Rn is a bounded C2-domain. A function defined

in Ω with values in Cln has a representation: f(x) =
∑

A eAfA(x), x ∈ Ω,
fA(x) ∈ R.

Such a function f is continuous, differentiable, integrable, measurable,
etc. over Ω, if each component function fA is respectively continuous, dif-
ferentiable, integrable, measurable, etc. over Ω. Thus the usual function
spaces denoted by Cα(Ω, Cln), Lp(Ω, Cln) and W p,k(Ω, Cln) for k = 0, 1, . . .
and 1 < p < ∞, are defined as follows: f ∈ Cα(Ω, Cln) if fA ∈ Cα(Ω,R),
and f ∈W p,k(Ω, Cln) if fA ∈W p,k(Ω,R).

Note here that W p,0(Ω, Cln) = Lp(Ω, Cln), 1 < p <∞.
For p = 2, the Lebesgue space L2(Ω, Cln) becomes a Hilbert space with

a Clifford-valued inner product given by

〈f, g〉 :=
∫

Ω
f(x)g(x)dΩ. (2.1)

Let us introduce the Dirac operator by

D =
n∑
k=1

ek
∂

∂xk
. (2.2)

This operator is a hypercomplex analogue of the well known complex
Cauchy-Riemann operator ∂z = ∂x + i∂y. For the Dirac operator D, we
have that ∆ = DD = DD, where ∆ is the Laplacian and

D =
n∑
k=1

ek
∂

∂xk

is the conjugate of the Dirac operator D.

Definition 2.2 ([9]). Let Γ: Ω → R be a C1-function and let γ(x) =∑n
j=1 ejγj(x). Then γ is called the gradient potential of Γ if and only

if

γ(x) =
n∑
j=1

ej
∂

∂xj
Γ (x) .

Then we introduce the in-homogeneous Dirac-operator with gradient po-
tential γ by:

Dγ :=
n∑
j=1

ej

(
∂

∂xj
− γj

)
(2.3)
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where D is the Dirac-operator (2.2) and γ is the above defined gradient
potential.

Definition 2.3. A function h ∈ C1(Ω → Cln) is said to be left γ-regular
with respect to the potential Γ if Dγh(x) = 0, ∀x ∈ Ω, and right γ-regular
with respect to Γ if h(x)Dγ = 0.

Let us denote by

Mγ,l(Ω, Cln) = {f ∈ C1(Ω, Cln) : Dγf(x) = 0}
and

Ml(Ω, Cln) = {f ∈ C1(Ω, Cln) : Df = 0}.
The following lemma is an isomorphism between spaces of functions which

are left-monogenic and left γ-regular over Ω.

Lemma 2.1 ([9]). The modules Ml(Ω, Cln) and Mγ,l(Ω, Cln) are canoni-
cally isomorphic.

Proof. Clearly the map f 7→ f(x)e−Γ(x) : Ml(Ω, Cln) 7→Mγ,l(Ω, Cln) is an
isomorphism.

Corollary 2.2. The fundamental solution to the in-homogeneous Dirac-
operator Dγ is given by

ΨΓ(x− y) =
(x− y)

ωn‖x− y‖n
e−(Γ(x)−Γ(y)), x 6= y

where ωn is the surface area of the unit sphere in Rn.

Using this fundamental solution, we define the following convolution in-
tegral operators. But first let us define the necessary function spaces:

C0,α
Γ (Ω, Cln) :=

{
f : Ω→ Cln : f (x) eΓ(x) ∈ C0,α (Ω, Cln)

}
,

W p,k
Γ (Ω, Cln) :=

{
f : Ω→ Cln : f (x) eΓ(x) ∈W p,k (Ω, Cln)

}
for k = 0, 1, 2, . . . and p > 1. Here when k = 0, we have weighted Lebesgue
spaces LpΓ (Ω, Cln).

Definition 2.4. Let f ∈ C0,α
Γ (Ω) ∩ CΓ(Ω), 0 < α < 1. Then define, the

following Cln-valued convolution operators:

ζΩ,Γf(x) :=−
∫

Ω
ΨΓ(x− y)f(y)dΩy, x ∈ Rn (2.4)

ζΣ,Γf(x) :=
∫

Σ
ΨΓ(x− y)ν(y)f(y)dΣy, x /∈ Σ (2.5)
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and

SΣ,Γf(x) := 2
∫

Σ
ΨΓ(x− y)ν(y)f(y)dΣy, x ∈ Σ (2.6)

where ν(y) is the outer unit normal vector to the boundary Σ at the point
y. Note here that the operator (2.6) is a singular integral operator and is
understood in terms of the Cauchy principal value (p.v.).

Lemma 2.3 ([4]). The operator ζΩ,Γ is continuous from W p,k
Γ (Ω, Cln) in

to W p,k+1
Γ (Ω, Cln) for 1 < p <∞, k = 0, 1, . . . .

The in-homogeneous Dirac operator (2.3) has also a right inverse given
by the integral operator defined in (2.4). But before we prove this, we have
the following,

Proposition 2.4 ([4]). Let f ∈ C0,1
Γ (Ω) ∩ CΓ(Ω). Then

DζΩ,Γf = γζΩ,Γf + f, x ∈ Ω

where D is the homogeneous Dirac operator given in (2.2).

Proof. For each i = 1, . . . , n and for each x ∈ Ω, we have
∂

∂xi
ζΩ,Γf(x) =

∂

∂xi

∫
Ω

ΨΓ(x− y)f(y)dΩy

=
∫

Ω

ei − n(xi − yi)
(x− y)
‖x− y‖2

‖x− y‖n
+ γi(x)

(x− y)
‖x− y‖n

 e−(Γ(x)−Γ(y))f(y)dΩy

− ei
n
f(x).

Then

DζΩ,Γf(x) =
∫

Ω

(
−n+ n+ γ(x)
‖x− y‖n

)
e−(Γ(x)−Γ(y))f(y)dΩy + f(x)

=γ(x)
∫

Ω
ΨΓ(x− y)f(y)dΩy + f(x).

Corollary 2.5 ([4]). Let f be a Cln-valued function which satisfies the con-
dition of Proposition 2.4 above. Then

Dγ

∫
Ω

ΨΓ(x− y)f(y)dΩy = f(x), x ∈ Ω
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and

Dγ

∫
Ω

ΨΓ(x− y)f(y)dΩy = 0, x ∈ Ωc
.

Corollary 2.6. Let f ∈W p,k
Γ (Ω), 1 < p <∞, k = 0, 1, . . . . Then

Dγ

∫
Ω

ΨΓ(x− y)f(y)dΩy = f(x), x ∈ Ω

and

Dγ

∫
Ω

ΨΓ(x− y)f(y)dΩy = 0, x /∈ Ω.

The main relationships between the function f , the differential operator
(2.3) and the convolution integrals (2.4), (2.5) and the nature of the sin-
gular integral transform (2.6) near the surface Σ are given in the following
theorem.

Theorem 2.7. Let f ∈ C0,1
Γ (Ω, Cln) ∩ CΓ(Ω, Cln). Then

f|Ω = ζΣ,Γf + ζΩ,ΓDγf. (2.7)

If f ∈Mγ,l(Ω, Cl0,n), then we have the Cauchy integral formula

f(x) = (ζΣ,Γf)(x) =
∫

Σ
ΨΓ(x− y)ν(y)f(y)dΣy, x ∈ Ω.

Note that ζΣ,Γf|Ω = 0 if and only if f|Ω = 0. Thus γ-regular functions
are determined from their traces on the boundary Σ of Ω.

Corollary 2.8 ([4]). Let f ∈ W p,k
Γ (Ω, Cln), for k = 0, 1, . . . and 1 < p <

∞. Then∫
Σ

ΨΓ(x− y)ν(y)f(y)dΣ +
∫

Ω
ΨΓ(x− y)Dγf(y)dΩy = f(x),

x ∈ Ω. (2.8)

Since also, ζΣ,Γ + ζΩ,ΓDγ = IΩ on Ω, where IΩ is the identity operator,
we see that the operator

ζΣ,Γ : W p,k−1/p
Γ (Σ, Cln)→W p,k

Γ (Ω, Cln) ∩ kerDγ(Ω)

is continuous. This is indeed, if f ∈ W
p,k−1/p
Γ (Σ, Cln), then there exists

g ∈ W p,k
Γ (Ω, Cln) such that trΣ g = f . Then from (2.8) and from the

continuity of ζΩ,Γ, we have DγζΣ,Γf = 0. That is ζΣ,Γf ∈ Mγ,l(Ω, Cln).
That also means (f − ζΩ,ΓDγf)|Ω ∈Mγ,l(Ω, Cln).
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Again since the trace operator tr∂Ω : W p,k
Γ (Ω)→W

p,k−1/p
Γ (Σ) is continu-

ous [12] and from the continuity of ζΣ,Γ, we have that the singular integral
operator SΣ,Γ : LpΓ(Σ)→ LpΓ(Σ) is continuous. For details see [1] and [2].

Proposition 2.9 ([4]). Let f ∈ C0,α
Γ (Σ, Cln), 0 < α < 1, and let ΣτQ be a

subset of Σ consisting of points with tangent spaces in Σ. For each y ∈ ΣτQ,
let ηy := y + tν(y) : (0, 1] → Rn \ Σ where, ν(y) is the outer unit normal
vector to Σ at point y. Then

lim
t↓0

∫
Σ

ΨΓ(x− ηy(t))ν(x)f(x)dΣ− p.v.
∫

Σ
ΨΓ(x− y)ν(x)f(x)dΣ =

1
2
f(y)

for each y ∈ ΣτQ.
And if ρy := y − tν(y) : (0, 1]→ Rn \ Σ, then

lim
t↓0

∫
Σ

ΨΓ(x− ρy(t))ν(x)f(x)dΣ− p.v.
∫

Σ
ΨΓ(x− y)ν(x)f(x)dΣ = −1

2
f(y)

for each y ∈ ΣτQ.

Here and in the next proposition, p.v. refers to the Cauchy principal
value.

Proposition 2.10 ([4]). Let f ∈ W p,k
Γ (Σ, Cln), for 1 < p, k = 0, . . . , and

let ΣτQ, ηy, ρy be defined as above. Then

lim
t↓0

∫
Σ

ΨΓ(x− y − tν(y))ν(x)f(x)dΣ− p.v.
∫

Σ
ΨΓ(x− y)ν(x)f(x)dΣ

=
1
2
f(y)

for y ∈ ΣτQ and

lim
t↓0

∫
Σ

ΨΓ(x− y + tν(y))ν(x)f(x)dΣ− p.v.
∫

Σ
ΨΓ(x− y)ν(x)f(x)dΣ

= −1
2
f(y)

for y ∈ ΣτQ.

Theorem 2.11 (Luzin’s). Let f ∈ C0,1
Γ (Ω) ∩ CΓ,0(Ω) and Dγf(x) = 0 in

Ω. Further, let Π ⊆ Σ be a (n − 1)-dimensional submanifold and f(x) = 0
on Π. Then f(x) = 0 in Ω.

Observe that, if f ∈ CΓ,0(Ω) and Dγf = 0 on Π, then f ≡ 0 in Ω.
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Proposition 2.12 ([4]). The Lebesgue space L2
Γ(Ω, Cln) has an orthogonal

decomposition

L2
Γ(Ω, Cln) = B2

γ(Ω, Cln)⊕Dγ(W 2,1
Γ,0(Ω, Cln)) (2.9)

with respect to the inner product given by equation (2.1).

B2
γ(Ω, Cln) is the Bergman space of square integrable, left γ-regular Cln-

valued functions over Ω, and W 2,1
Γ,0(Ω, Cln) is the space of functions in the

Sobolev space W 2,1
Γ (Ω, Cln) whose traces vanish over the boundary Σ of Ω,

or equivalently, the completion of C∞Γ,0(Ω, Cln) in the Space W 2,1
Γ (Ω, Cln),

and L2
Γ(Ω, Cln) is the space of functions f : Ω→ Cln such that f(x)eΓ(x) ∈

L2(Ω, Cln). The decomposition gives orthogonal projection operators as
well:

P : L2
Γ(Ω, Cln) 7→ B2

γ(Ω, Cln) and Q : L2
Γ(Ω, Cln) 7→ Dγ(W 2,1

Γ,0(Ω, Cln))

such that for f ∈ L2
Γ(Ω, Cln), f = Pf + Qf , with PQ = QP = 0 and

P 2 = P , Q2 = Q.

3. Cln-minimal function systems

In this part of the paper, we construct Cln-minimal family of functions in
B2
γ(Ω, Cln) which are more refined than the ones obtained in [4]. Similar and

analogous results in quaternionic analysis are also obtained by K. Gürlebeck
and W. Spröessig in [1], [2]. These functions are useful for approximating
solutions of elliptic boundary value problems in the best way. For this
purpose we choose dense points of some outer surface and define a family
of functions from the fundamental solution (1.1) of the in-homogeneous
Dirac operator (2.3) by making the selected points as the singular points
of the fundamental solution. We then refine these functions more by an
orthogonalization process. We begin with results of classical analysis.

Definition 3.1. Let the couple (X, ‖.‖)Clnbe a normed right-vector space
X over the Clifford algebra Cln. A system of points {xm}m ⊆ X is called
Cln-complete in X if and only if

∀ε > 0, ∀x ∈ X, ∃λi ∈ Cln (i = 1, . . . , n0)

such that ∥∥∥∥∥x−
n0∑
i=1

xiλi

∥∥∥∥∥
X

< ε.
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Definition 3.2. A system of points {xm}m ⊆ X is called closed in X if
every bounded Cln-valued right linear functional Λ that vanishes on the
points vanishes on the whole space X.

Lemma 3.1. The system of points {xm}m ⊆ X is closed if and only if it
is Cln-complete in X.

Proposition 3.2 ([4]). Let Ω and Ωl be bounded C2-domains in Rn such
that Ωl ⊇ Ω, Σ := ∂Ω and Σl := ∂Ωl. Let also {xm}m be a dense subset of
Σl. Then the family of functions = :=

{
ΨΓ
m

}
m

where, for each m ∈ N ,

ΨΓ
m(x) :=

(x− xm)
ωn‖x− xm‖n

e−(Γ(x)−Γ(xm)),

is Cln-complete system in B2
γ(Ω, Cln).

Definition 3.3. A family of functions {fi}i in (X, ‖ · ‖)Cln , a normed right
vector space of Cln-valued functions on X, is called Cln-minimal, if ∀j,
fj /∈ X \ [span

Cln

{fk}k 6=j ].

Then the Cln-complete function system {ΨΓ
m}m which we construct from

a dense subset {xm}m of an outer surface Σ ⊂ Ωc = Rn \ Ω is not Cln-
minimal in B2

γ (Ω, Cln), since an other dense family of functions can be
obtained from {xm}m \ {finitely many of xm’s}

Definition 3.4. A finite family of functions {fj : j = 1, . . . ,m} ⊂
(X, ‖ · ‖)Cln is called Cln-unisolvent with respect to {yj : j = 1, . . . ,m} ⊂ Ω,
if the algebraic expression Λ(x) = f1(x)λ1+f2(x)λ2+. . .+fm(x)λm vanishes
at most at n−1 points of the set {yj : j = 1, . . . ,m}, ∀λ = (λj ∈ Cln)j=1,... ,n
with ‖λ‖2 > 0.

Proposition 3.3. Let Ω, Ω0 be two bounded C2-domains with Ω0 ⊃ Ω and
dist(∂Ω, ∂Ω0) ≥ δ > 0 for some δ. Let also {yi}i be a dense subset of Σ = ∂Ω
and set xi = yi+tν(yi) so that xi ∈ ∂Ω0, where ν(yi) is a unit pointing outer
normal to ∂Ω at yi. Then for some α > 0, the system {ΨΓ

i : i = 1, . . . ,m}
is Cln-unisolvent with respect to the points {yi : i = 1, . . . ,m} for some t,
0 < t < α.

Proof. Here we need to show that, if the algebraic equation Λ(x) = ΨΓ
1λ1 +

. . . + ΨΓ
mλm vanishes at each point yi, for i = 1, . . . ,m, then each of the
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Clifford numbers λi = 0, for i = 1, . . . ,m. Therefore consider the system of
equations obtained from evaluating Λ at each point yi:

Λ(y1) =ΨΓ
1 (y1)λ1 + ΨΓ

2 (y1)λ2 + . . .+ ΨΓ
m(y1)λm = 0

Λ(y2) =ΨΓ
1 (y2)λ1 + ΨΓ

2 (y2)λ2 + . . .+ ΨΓ
m(y2)λm = 0

...

Λ(ym) =ΨΓ
1 (ym)λ1 + ΨΓ

2 (ym)λ2 + . . .+ ΨΓ
m(ym)λm = 0.

Let us investigate the coefficients. First, the ones which are along the
diagonal:

‖ΨΓ
k (yk)‖ =

∥∥∥∥∥ (yk − xk)
ωn‖yk − xk‖n

e−(Γ(yk)−Γ(xk))

∥∥∥∥∥
=

∥∥∥∥∥ (yk − (yk + tν(yk)))
ωn‖yk − (yk + tν(yk))‖n

e−(Γ(yk)−Γ(yk+tν(yk)))

∥∥∥∥∥
≥ ζ

ωntn−1 →∞ as t→ 0+

where ζ is some positive constant.
And the ones which are off the diagonal:

‖ΨΓ
k (yj)‖ =

∥∥∥∥∥ (yk − xj)
ωn‖yk − xj‖n

e−(Γ(yk)−Γ(xj))

∥∥∥∥∥
=

∥∥∥∥∥ (yk − (yj + tν(yj)))
ωn‖yk − (yj + tν(yj))‖n

e−(Γ(yk)−Γ(yj+tν(yj)))

∥∥∥∥∥
≤ β

‖yk − yj − tν(yj)‖n−1 →
β

‖yk − yj‖n−1 < +∞, as t→ 0+

for some β > 0.
Therefore,

‖ΨΓ
k (yk) ‖ ≥

m∑
j=1
(j 6=k)

‖ΨΓ
k (yj) ‖ as t ↓ 0+.

Which implies that ∃α > 0 3 for 0 < t < α, we have

‖ΨΓ
k (yk) ‖ ≥

m∑
j=1
(j 6=k)

‖ΨΓ
k (yj) ‖.

That is the coefficient matrix
(
ΨΓ
k (yj)

)m
k,j

of the above homogeneous sys-
tem Ψλ = 0 is diagonally dominant. Therefore, the system has a unique
solution for λ = (λi : i = 1,m) and that is λ = 0. The above arguments
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show that the diagonal elements dominate the matrix of coefficients of the
above system of equations and therefore the system has a unique solution
for λ1, λ2, . . . , λm. Hence λ1 = λ2 = . . . = λm = 0. Which proves the
result.

Remark 3.1. Even though the solvability of such a system is guaranteed in
our case, for some other types of systems, there has to be a way to determine
the optimal interval of existence for α.

Let {yi}i and {xi}i be as in Proposition 3.3. We construct a family of
functions {φi}i from {ΨΓ

i }i as follows:

for each m ∈ N , and k = 1, . . . ,m, φk = ΨΓ
k −

∑k−1
i=1 φiγi,k, with

φ1 := ΨΓ
1 , and for i < k, γi,k ∈ Cln, are determined in such a way

that:

φ1(y1)γ12 = ΨΓ
2 (y1),

φ1(y2)γ13 + φ2(y2)γ23 = ΨΓ
3 (y2),

...

φ1(yi)γ1,i+1 + φ2(yi)γ2,i+1 + . . .+ φi(yi)γi.i+1 = ΨΓ
i+1(yi),

...

φ1(yk)γ1,k+1 + φ2(yk)γ2,k+2 + . . .+ φk(yk)γk,k+1 = ΨΓ
k+1(yk).

Then we have: φi(yi) 6= 0, ∀i ∈ N , and φi(yj) = 0, for j < i.

Proposition 3.4. Let {yi}i and {xi}i be as in Proposition 3.3. Then the
family of functions {φi}i constructed above is Cln-minimal in B2

γ(Ω, Cln).

Proof. First, we note that from the construction of the functions φi’s,
φi(yi) 6= 0, ∀i ≤ m, m ∈ N. Also {φi}i is Cln-complete. This is in-
deed, if f ∈ B2

γ(Ω, Cln) is such that
∫

Ω φi(x)f(x)dΩx = 0, i = 1, . . . , then∫
Ω ΨΓ

i (x)f(x)dΩx = 0, for i = 1, . . . . This implies that f ≡ 0, since {ΨΓ
i }i

is Cln-complete. Thus, we proved the completeness of {φi}i. To prove
that {φi}i is Cln-minimal, we assume the contrary. That is, there exists
φk0 ∈ B2

γ(Ω, Cln) \ [span
Cln

{φi}i6=k0 ]. Then we get:

φk0 = lim
m→∞

(φ1γ1,m + φ2γ2,m + . . .+ φmγm,m) in B2
γ(Ω, Cln).

From Harnack’s convergence theorem, we have
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φk0(x) = lim
m→∞

(φ1(x)γ1,m + φ2(x)γ2,m + . . .+ φ̂k0(x)γk0,m + . . .

+ φm(x)γm,m), x ∈ Ω

where φ̂k0 is omitted. From the construction, we have φk0(yj) = 0, for
j < k0 and hence

0 = φk0(yj) = lim
m→∞

m∑
i=1, i 6=k0

φi(yj)γi,m = lim
m→∞

j∑
i=1

φj(yj)γj,m.

This implies lim
m→∞

γj,m = 0. This in turn implies:

φk0(yk0) = lim
m→∞

m∑
i=1, i 6=k0

φi(yk0)γi,m = lim
m→∞

k0−1∑
i=1

φi(yk0)γi,m = 0.

This is a contradiction to our construction that φk0(yk0) 6= 0. This proves
that {φi}i is Cln-minimal in B2

γ(Ω, Cln).

Proposition 3.5. Let

B(m) := span
Cln

{φk : k = 1, . . . ,m}

and f ∈ B2
γ(Ω, Cln) such that f = φ1λ1 + . . . + φmλm. If pm(f) =∑m

i=1 φiγi,m is the best approximation of f in B(m), then for each k =
1, . . . ,m, we have

λk = lim
m→∞

γk,m.

Proof. Let f ∈ B2
γ(Ω, Cln). As {φk}k is Cln-complete in B2

γ(Ω, Cln), we
have that for each ε > 0, and x ∈ Ω, ‖f(x) −

∑m
k=1 φk(x)γk,m‖L2

Γ
< ε, for

every m > n0 ∈ N . In particular, from the constructions of the functions
{φi}i, and approximating at each point yj , for j = 1, . . . ,m, we have∥∥∥∥∥f(yj)−

m∑
k=1

φk(yj)λk

∥∥∥∥∥
L2

Γ

< ε

for m > n0. Which implies∥∥∥∥∥
m∑
k=1

φk(yj)γk,m −
m∑
k=1

φk(yj)λk

∥∥∥∥∥
L2

Γ

=

∥∥∥∥∥
m∑
k=1

φk(yj)(γk,m − λk)

∥∥∥∥∥
L2

Γ

< ε

for all m > n0 ∈ N , and hence ‖γk,m−λk‖L2
Γ
< ε for all m > n0 ∈ N . That

is γk,m → λk as m→∞. This proves the proposition.
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4. Application

Next, we see the application of the complete and minimal function sys-
tems that we constructed in approximating null solutions of first order par-
tial differential equations of the in-homogeneous Dirac operator.

Proposition 4.1. Let Ω be a bounded C2-domain in Rn and Σ = ∂Ω. Let
also g ∈W 2,k−1/2

Γ (Σ, Cln), k = 1, . . . . Then the boundary value problem

Dγf =0, in Ω (4.1)

trΣ f =g (4.2)

has a unique solution f ∈W 2,k
Γ (Ω, Cln) given by

f(x) =
∫

Σ
ΨΓ(x− y)ν(y)g(y)dΣy, x ∈ Ω (4.3)

Proof. As g ∈W 2,k−1/2
Γ (Σ, Cln), and trΣ is continuous, there exists a func-

tion f ∈ W 2,k
Γ (Ω, Cln) such that g = trΣ f . Then from equation (2.8), we

get the result.

Proposition 4.2. Let Ω, Σ and g be as in Proposition 4.1. Then for a
given ε > 0 and for a given left γ-regular solution f given in equation (4.3)
of the boundary value problem (4.1), (4.2), there exist Clifford numbers βj
(j = 1, . . . n0) such that∥∥∥∥∥∥f −

n0∑
j=1

ΨΓ
j βj

∥∥∥∥∥∥
W 2,k

Γ,Cln

< ε on Ω.

Proof. Since the system = is Cln-complete in the space of left γ-regular
functions which are in W 2,k

Γ (Ω, Cln), the solution f of the boundary value
problem (4.1), (4.2) can be approximated with finitely many elements of =.
That means, ∃βj ∈ Cln (j = 1, . . . , n0) such that the above approximation
inequality holds. The Clifford numbers βj (j = 1, . . . n0) are determined by
solving a system of equations obtained from the boundary conditions

trΣ

n0∑
j=1

ΨΓ
j βj(yi) = g(yi)

for each i = 1, . . . , n0, where {yi : i = 1, . . . , n0} is a set of unisolvent points
selected on Σ as in Proposition 3.3.
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Then a best approximation of the above solution can be obtained from
the minimal functions.

Corollary 4.3. Using the Cln-minimal functions {φk}k, the solution (4.3)
of the BVP (4.1), (4.2) is approximated in the best way in

B(n0) = span
Cln

(
{φj}n0

j=1

)
as

∥∥∥∥∥∥f −
n0∑
j=1

φjλj

∥∥∥∥∥∥
W 2,k

Γ,Cln

< ε

with λj (j = 1, . . . , n0) determined as in Proposition 3.5.
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