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Abstract. In this article we de�ne the spherical ��;Sn�1 operator over
domains in the (n� 1)D� unit sphere Sn�1 of Rn and develop new and
analogous results. To that end, we introduce a spherical Dirac operator
�� := �! + �, where � 2 C and �! = �! ^ D! , the anti-symmetric

Grassmanian product of ! with D! =

nX
i=1

ei
@
@!i

. We use a Gegenbauer

polynomial 	n�(! � �) as a Cauchy kernel for ��.

1. Introduction

The �� operator is one of the tools used to study smoothness of func-
tions over Sobolev spaces and to solve some �rst order partial di¤erential
equations such as the Beltrami equation. In Euclidean spaces, we see that
the singularity of its kernel is of order one more than the dimension of the
space Rn and hence it is a hyper singular integral operator.

In the class of singular integral operators, the �-operator is the least
studied integral operator than the weakly singular and singular operators
which are studied extensively.

Recently in [8] Dejenie A. Lakew and John Ryan also study the �� oper-
ator in a generalized setting over Domain Manifolds in Cn+1 and produced
some properties and its integral representation as well.

In this paper we study the ��;Sn�1-operator over domains in S
n�1, the

(n� 1)D -unit sphere in Rn. The di¤erential operator we are considering
is the spherical Dirac operator

�� := �! + �

where
�! = �! ^D!
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and � is some complex number. Here

D! =

nX
i=1

ei
@

@!i

is the usual Dirac operator in Rn and ^ is the Grassman( or wedge) product.
The function which is used as a Cauchy kernel or fundamental solution to
this spherical Dirac operator is a Gegenbauer polynomial.

2. Preliminaries: Algebraic and Analytic

Let e1,e2; e3;...,en be orthonormal unit vectors that generate Rn. Then
the anti-commutative algebra of dimension 2n is the one de�ned in terms of
a negative inner product :

hx; yi = �
nX
i=1

xiyi:

Thus k x k= �x2 . Under this structure we have :

eij + eji = �2�ij

where �ij is the Kronecker delta. This algebra is called a Cli¤ord algebra
and is denoted by Cln. Every element in this algebra is represented by

x =
X
A

eAxA

where eA = ei1i2:::ir for A = fi1 < i2 < ::: < ing � f1; 2; 3; :::; ng and
xA 2 R.

Thus by identifying the element x = (x1; x2; :::; xn) of Rn with
nX
i=1

eixi

2 Cln, we imbed the Euclidean space

Rn ,! Cln:

For x; y 2 Cln , their Cli¤ord product xy is written as a sum of their inner
product and their anti-symmetric Grassmanian product, as :

xy = x:y + x ^ y:

In particular, for x; y 2 Rn; we have:

xy =

 
nX
i=1

eixi

!0@ nX
j=1

ejxj

1A
=

nX
i;j=1

eijxiyj
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=

nX
i=j=1

eiixiyi +

nX
i6=j

eijxiyj

= �
nX
i=1

xiyi| {z }
x:y

�
nX
i<j

eij (xiyj � xjyi)| {z }
x^y

Every non zero element of Rn is invertible : for x 2 Rn�, where � indicates
the tossing out of zero,

x�1 =
�x
k x k2 :

Also for every element

x =
X

A�f1<2<:::<ng
eAxA

of Cln (R), we de�ne the Cli¤ord conjugate x of x by

x :=
X

A�f1<2<:::<ng
eAxA

where, for

eA = ei1 :::eik

eA = eik :::ei1 ; ej = �ej ; j = 1; :::; n; e0 = e0

and therefore, we have a Cli¤ord norm given by

k x kCl= [xx]0 :

Thus, the unit sphere Sn�1 in Rn is described as :

Sn�1 = fx 2 Rn :k x kCln= 1g :

Consider a c1� domain 
 � Sn�1 , a function f : 
 ! Cln has a repre-
sentation given by :

f(x) =
X

A�f1<2<:::<ng
eAfA(x)

where fA : 
! R. In this regard, a Cli¤ord valued function over a domain
is said to be Ck if each component real valued function fA is Ck, and we say
such a function belongs to a Sobolev space W p;k (
; Cln) if each component
function fA 2W p;k (
; Cln).

Let f 2 c1 (
; Cln) \ c
�

; Cln

�
, � 2 C and ! 2 Sn�1 . Then
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De�nition 1. We de�ne a spherical Dirac operator by

�� := �! + �

where
�! = �! ^D!

= �
nX
i<j

eij

�
!i

@

@!j
� !j

@

@!i

�

and D! =
nX
i=1

ei
@
!i
is the usual Dirac operator.

De�nition 2. A function f 2 C1 (
! Cln) is called a spherical left mono-
genic function of order � if

��f (x) = 0;8x 2 

and is a spherical right monogenic function of order � if

f(x)�� = 0;8x 2 
:

Consider the generalized Gegenbauer function of degree � and of order
� :

C��(z) =
�(�+ 2�)

�(�+ 1)�(2�)
F

�
��; �+ 2�;�+ 1

2
;
1

2
(1� z)

�
where F (a; b; c; d) is a hypergeometric function given by

F (a; b; c; d) :=
1X
k=1

(a)k (b)k d
k

(c)k k!

for j d j� 1 with

(x)k :=
� (x+ k)

� (x)

which is simpli�ed to :
kY
i=1

(x+ i� 1)

Proposition 1. The Gegenbauer function with degree � and order � can be
re-written as:

C��(z) =
� (�+ 2�)

� (�+ 1)� (2�)

1X
k=1

 
kY
i=1

 
�� (�+ 2�) + (i� 1) (2�) + (i� 1)2

�� 1
2 + i

!!
(1� z)k

k!2k

Proof. The proof follows from the simpli�cation of the right side of the
hypergeometric function

F (a; b; c; d) :=
1X
k=1

(a)k (b)k d
k

(c)k k!
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to the sum

1X
k=1

 
kY
i=1

 
ab+ (i� 1) (a+ b) + (i� 1)2

c+ i� 1

!!
dk

k!

and therefore the hypergeometric function with particular inputs F
�
��; �+ 2�;�+ 1

2 ;
1
2 (1� z)

�
is simpli�ed to

1X
k=1

 
kY
i=1

 
�� (�+ 2�) + (i� 1) (2�) + (i� 1)2

�� 1
2 + i

!!
(1� z)k

k!2k
:

Hence the Gegenbauer function is given by

C��(z) =
� (�+ 2�)

� (�+ 1)� (2�)

1X
k=1

 
kY
i=1

 
�� (�+ 2�) + (i� 1) (2�) + (i� 1)2

�� 1
2 + i

!!
(1� z)k

k!2k
:

�

From the above Gegenbauer function, a function is constructed to be a
fundamental solution (or Cauchy kernel) for the spherical Dirac operator
�� := �! + � as

	n� (!; �) =
�

�n�1 sin��

�
C

n+1
2

� (!:�)� !�C
n+1
2

��1 (!:�)

�
See [12],[10] for details.

Proposition 2. The fundamental solution 	n� (!; �) to the spherical Dirac
operator can be written as:
	n� (!; �) =

�
�n�1 sin��

0BBBB@ �(�+n+1)
�(�+1)�(n+1)

1X
k=1

266664
 

kY
i=1

�
��(�+n+1)+(i�1)(n+1)+(i�1)2

n
2
+i

�!
�

!v �(�+n)
�(�)�(n+1)

1X
k=1

 
kY
i=1

�
(��+1)(�+n)+(i�1)(n+1)+(i�1)2

n
2
+i

�!
377775 (1�!:v)k

k!2k

1CCCCA.

Then using this as a Cauchy kernel , we de�ne the following integral
transforms over function spaces which are C1;�; for 0 � � < 1 or over
Sobolev spaces W p;k (
; Cln) for 1 < p <1.
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Let 
 be a bounded smooth domain in Sn�1 and f 2 C1 (
; Cln) , then
we de�ne, the Teodorescu transform as:

T
 (f) (�) =

Z


	n� (!; �) f(!)d!; for � 2 Sn�1

which is the right inverse of the spherical Dirac operator ��.

Also we have a non-singular boundary integral operator given by

z@
f (�) =
Z
@

	n� (!; �)n (�) f(�)d@
!; for � =2 @


An other boundary integral is the singular integral given by

eF@
f(v) = 2 Z
@

	n� (!; �)n (�) f(v)d@
!; for v 2 @


The last integral is seen in terms of the Cauchy principal value and is good
for computing non tangential limits of integrable functions on the boundary
and also for Plemelji formulae.

By arguments of continuity and denseness, the integral transforms can
also be extended over Sobolev spaces.

Also for p 2 (1;1) and k = 0; 1; 2; :::; the following mapping properties
hold:

T
 :W
p;k (
; Cln)!W p;k+1 (
; Cln)

and
F@
 :W

p;k� 1
p (@
; Cln)!W p;k (
; Cln)

Note that the functions in W
p;k� 1

p (@
; Cln) are fractionally (or ratio-
nally) smooth and the z@
 is an operator which increases the smoothness
of a function in the Slobedeckij space W p;k� 1

p (@
; Cln) by 1
p , and hence it

maps functions from Slobedeckij spaces to Sobolev spaces.

That is, the boundary transform z@
 retrieves regularity(smoothness)
exponents of functions in W p;k (
) which were lost by the trace operator as:

tr@
 :W
p;k (
; Cln)!W

p;k� 1
p (@
; Cln) and z@
f = z@
 (tr@
f)

In general, the function spaces W p;
(@
; Cln) , for 
 a fraction are called
Slobedeckij spaces with the following de�nition :

De�nition 3. f 2W p;
(@
; Cln) if (1+ j � j
)
^
f 2 Lp (@
; Cln)
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where
^
f is the Fourier transform of f and the norm is therefore given by

k f kW p;
(@
;Cln):=

0@Z
@


(1+ j � j
)p j bf jp d@

1A 1

p

and these function spaces are used as spaces of symbols of pseudo-di¤erential
operators, in which, singular integral operators are special types of pseudo-
di¤erential operators.

Symbols are strong tools to study boundedness of pseudo-di¤erential op-
erators, where the symbol of a singular integral operator is bounded if and
only if the operator is bounded, see [11]. In particular, it is indicated in [4],
[11] that the �-operator is bounded by showing its symbol is bounded.

Proposition 3. Let f 2 BC1 (
! Cln), with a bounded derivative. Then

��T
f = f:

That is T
 is a right inverse of ��.

Theorem 1. (Borel-Pompeiu) For f 2 C1 (
! Cln), we have

�
f = F@
f + T
��f

where �
 is the usual characteristic function of the domain 
.

Corollary 1. (Cauchy Integral Formula for Spherical Monogenics)

f 2 ker �� , f = F@
f

Corollary 2. From the Borel-Pompeiu and the CIFs, a traceless 
�regular
function is a null function over 
.

3. Fundamental Results on the Spherical Dirac Operator

In this section, we present fundamental results on �� , solve boundary
value problems over domains in the unit sphere like cases of domains in
Euclidean spaces, using the algebraic and analytic tools presented in the
preliminary.

Proposition 4. Let g 2 W 2;1 (
; Cln), h 2 W 2; 1
2 (@
; Cln). Then the

inhomogeneous BVP: �
��f = g on 

trf = h, on @


has a unique solution f 2W 2;2 (
; Cln) given by

f = F@
h+ T
g:

which is almost a C2�function for no Rn � 
 but is almost a C1�function
in R1
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Proof. The unique solution of the BVP is obtained using the Borel-Pompeiu
formula which is given by

f = F@
h+ T
g:

�
Corollary 3. The analytic solution f of the BVP given above is almost a
C1� function in R1 but almost a C2� function for no Rn.
Proof. The solution f given above is a function in the Sobolev spaceW 2;2 (
; Cln)
and is almost a Ck-function over 
 contained in Rn, if

2 >
n

2
+ k

where k 2 N.
But the last inequality holds only when k = 1 and n = 1 and that prove

the result. �
Proposition 5. (Representation of a Function with Compact Support)
Let f 2 C1c (
! Cln) . Then f has a representation given by

f(v) = T
 (��f) (v)

for � 2 Sn�1.
Proof. Let f be a C1� function with compact support over 
 � Sn�1. Then
from Borel-Pompeiu formula we have the required result, since the boundary
integral is zero.

We see here that T
 is both right and left inverse of the spherical Dirac
operator ��. �
Proposition 6. (Representation of a Global Function)
If 
 is a global domain in the unit sphere, then every function f in

W 2;2(
; Cln)(or in C1(
; Cln) ) can be represented over 
 by

f (v) =

Z



	n� (w � v) �� (w) f (w) d
w:

Proof. 
 is a global domain in the unit sphere means that 
 is the whole
sphere. Thus as the sphere is a boundary hypersurface,
its boundary is empty set ( we recall from di¤erential topology that @@ =

?). Therefore the @�integral of f :Z
@


	n� (w � v)n(w)f (w) d
w =

Z
@
=@@(�)

	n� (w � v)n(w)f (w) d
w

=

Z
?

	n� (w � v)n(w)f (w) d
w

= 0

and therefore from Borel-Pompeiu formula, we have the result. �
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The Lebesgue space L2 (
; Cln) with a Cli¤ord valued inner product given
by

(3.1) hf; gi
 =
Z



fgd


f; g 2 L2 (
; Cln) is a Hilbert space and therefore has an orthogonal
relationship given by:

Proposition 7. In the Hilbert space L2 (
; Cln), with respect to the in-
ner product (3.1) the orthogonal space

�
B2� (
; Cln)

�? of the generalized
Bergman space B2� (
; Cln) is given by :�

B2� (
; Cln)
�?
= ��

�
W 2;1
0 (
; Cln)

�
where the Bergman space B2� (
; Cln) is the set of all Cli¤ord valued

square integrable functions which are annihilated by the spherical Dirac op-
erator �� over 
 .

Proof. First lets prove that B2� (
; Cln) \ ��
�
W 2;1
0 (
; Cln)

�
is f0g, the

singleton with only the zero function as the element.

Indeed, for f 2 B2� (
; Cln) \ ��
�
W 2;1
0 (
; Cln)

�
, we have ��f = 0 on 


and f = ��g, for g 2W 2;1
0 (
; Cln).

Then ��f = ��;0g = 0) g � 0 on 
. Therefore f � 0 on 
.

Also for f�L2 (
; Cln) we have f = Pf+Qf with Pf = f���
�
��1�;0��f

�
andQf = ��

�
��1�;0��f

�
with Pf 2 B2� (
; Cln) andQf 2 ��

�
W 2;1
0 (
; Cln)

�
,

where P is the Bergman projection and Q is its orthogonal complement.
�

As usual, the two orthogonal projections we use in the proof of the above
orthogonality relations are

P : L2 (
; Cln)! B2� (
; Cln)

which is the Bergman projection and

Q : L2 (
; Cln)! ��

�
W 2;1
0 (
; Cln)

�
is its orthogonal complement with
Q = I � P , and

PQ = 0 = QP;P 2 = P;Q2 = Q:
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Proposition 8. For � 2 B2� (
; Cln) and  2
�
B2� (
; Cln)

�?, the squared
norm de�ned by jjj � jjj:=k � k2L2(
;Cln)do satisfy the following equalities:
8n 2 N;
(a) k �+  knL2(
;Cln)=

�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

�n
2

(b) jjj �+  jjjn= (jjj � jjj + jjj  jjj)n

Proof. Here the proof can be done using induction on n :
Since � 2 h i? ; the orthogonal space of the space h i spanned by  , we

have
Z



� d
 = 0 =

Z



 �d
 which implies,

k �+  k2L2(
;Cln)= [h�+  ; �+  i
]0

=

24Z



(�+  ) (�+  ) d


35
0

=

24Z



��d


35
0

+

24Z



  d


35
0

=k � k2L2(
;Cln) + k  k
2
L2(
;Cln)

That is

k �+  kL2(
;Cln)=
�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

� 1
2

Therefore the statement is valid for n = 1: We assume it is true for k, that
is

k �+  kkL2(
;Cln)=
�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

� k
2

Then
k �+  kk+1

L2(
;Cln)
=k �+  kkL2(
;Cln)k �+  k

1
L2(
;Cln)

=
�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

� k
2
�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

� 1
2

=
�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

� k+1
2

which shows the validity of the statement for k + 1 and that proves the
statement for 8n 2 N; and that proves (a).

(b) follows easily:

j jj �+  jjjn=
�
k �+  k2L2(
;Cln)

�n
=

�
k � k2L2(
;Cln) + k  k

2
L2(
;Cln)

�n
= (jjj � jjj + jjj  jjj)n

�
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In [9], the authors have a decomposition result for Sobolev spaces

W p;k�1 (
; Cln) = Bp;k (
; Cln)uDk

 
0
W
p;2k�1

(
; Cln)

!
where u is a direct sum and when p = 2 it is an orthogonal sum with respect
to the inner product (3.1), with corresponding orthogonal projections

P (k) :W 2;k�1 (
; Cln)! B2;k (
; Cln)

and

Q(k) :W 2;k�1 (
; Cln)! Dk

 
0
W
2;2k�1

(
; Cln)

!
with Q(k) = I � P (k) such that

P (k)Q(k) = Q(k)P (k) = 0;
�
P (k)

�2
=
�
P (k)

�
;
�
Q(k)

�2
= Q(k)

and Dk =
�Pn

i=0 ei
@
@xi

�k
, is the kth iterate of the Dirac operator.

Proposition 9. For f 2 L2 (
; Cln), and P , the Bergman projection, we
have

hPf; fi
 = hPf; Pfi

Proof. Let f 2 L2 (
; Cln). Then

f = Pf +Qf

with Pf 2 B2� (
; Cln) and Qf 2 ��
�
W 2;1
0 (
; Cln)

�
.

Therefore,

hPf;Qfi
 = hPf; Pfi
 =
Z



PfQfd
 = 0

which impliesZ



Pf (I �Q) fd
 =
Z



�
Pff � PfQf

�
d
 = 0:

That is, Z



Pffd
 =

Z



PfQfd
:

Therefore,
hPf; fi
 = hPf; Pfi
 :

�
Proposition 10. For f 2 L2 (
; Cln), 9g 2W 2;1

0 (
; Cln) such that

��f = ����g:
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Proof. Let f 2 L2 (
; Cln). Then
f = Pf +Qf

with Pf 2 B2 (
; Cln) and Qf 2 ��
�
W 2;1
0 (
; Cln)

�
.

Therefore there exists g 2 W 2;1
0 (
; Cln) such that Qf = ��g. Then

applying �� on both sides of the equation

f = Pf +Qf

we have the required result. �

Remark 1. In the case where the Laplacian is factored as

� = DD = DD

we could have that Df = �g, but in the case of spherical Laplacian the
factorization is a bit di¤erent.
For �� the spherical Dirac operator, the Spherical Laplacian is factored

as
�� = ���� = ����

where �+ � = �n+ 1.

4. Results on the Spherical ��;Sn�1�Operator

As is done in the case of de�ning the �-operator over general domains
in Euclidean spaces, we de�ne ��;Sn�1 over domains in the unit sphere as
follows.

De�nition 4. For f 2 C1 (
! Cln) , de�ne

��;Sn�1(f) := ��T
(f):

In the scale of Sobolev spaces, ��;Sn�1 is an operator fromW p;k (
; Cln)!
W p;k (
; Cln), for 1 < p <1; k = 0; 1; 2; :::.

Over domains 
 in Euclidean spaces Rn ( or Cn), this operator has the
following integral representation:
For n = 1:

�
f(w) =

Z


	(z � w)f(z)dz

where

	(z � w) = �1
� (z � w)2

and for n > 1, we have a representation given by :

�
f(x) =

Z


�
n+ (n+ 2) (y�x)

2

jy�xj2

! j y � x jn+2 f (y) d
y +
�n
n+ 2

f (x)
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which in both cases the �
�operator is a hyper singular integral operator
of C-Z type.

Note also that from the above general formula of the �
� operator, taking
n = 0, we have the well known �
�operator (given above) in the usual 1D
complex space C1 ' Cl0;1; where

p
�1 = i � e1:

Also in a generalized setting, Dejenie A. Lakew and John Ryan in [8] study
the ��operator over real, compact (n+ 1)� manifolds in Cn+1 which are
called Domain Manifolds and produced an integral representation of � over
such manifolds given by:

�
f(w) =

Z



D
	
� (w � v) f (v) d
v +

�n+ 1
n+ 1

f (w)

whereD
 is a nonhomogeneous Dirac like operator de�ned byD
 =
nX
j=0

ej

�
@
@xj

� 
j
�
,

	� is a fundamental solution for D
 and 
 is a domain manifold in Cn+1:

De�nition 5. We de�ne the Cli¤ord conjugate of ��;Sn�1 as

��;Sn�1 := ��T


where

T
 (f) (x) =

Z


	n� (y; x) f(y)d
y.

Proposition 11. (Classical Analogous Results:[4],[5])
On the Sobolev space W p;k (
; Cln) ; where 1 < p <1, k = 0; 1; 2; :::, we

have :
(1) ����;Sn�1 = ��
(2) ��;Sn�1�� = �� (I � F@
)
(3) F@
��;Sn�1 = ��;Sn�1 � T
��
(4) ����;Sn�1 � ��;Sn�1 = ��F@


Corollary 4. From the above proposition we see that

��;Sn�1 : B
2
� (
; Cln)! B2� (
; Cln)

where

B
2
� (
; Cln) = L2 (
; Cln) \ ker �� (
; Cln) and B2� (
; Cln)

is the Bergman space L2 (
; Cln) \ ker �� (
; Cln)
Corollary 5. Also we have

��;Sn�1 : ��

�
W 2;1
0 (
; Cln)

�
! ��

�
W 2;1
0 (
; Cln)

�
:

Proposition 12. Let g 2W p;k
0 (
; Cln) ; 1 < p <1; k = 0; 1; 2; :::. Then

(1) ��;Sn�1��g = ��g



14 DEJENIE A. LAKEW

(2) ����;Sn�1 = ��;Sn�1
(3) ��;Sn�1��g = ����;Sn�1g = ��;Sn�1g

Proof. If g�W p;k (
; Cln) is compactly supported over 
, then the boundary
integral of g is zero. That is F@
g = 0, and therefore, from

��;Sn�1�� = �� (I � F@
)

we have

��;Sn�1�� = ��

since the @�integral is zero, which proves (1)
Also from

����;Sn�1g � ��;Sn�1g = ��F@
 (tr@
g)
as g is compactly supported over the domain, its boundary integral over the
domain is zero, i.e. F@
 (tr@
g) = 0.
Thus we have

����;Sn�1g � ��;Sn�1g = ��F@
 (tr@
g) = 0

which implies

����;Sn�1g = ��;Sn�1g

which proves (2).
Finally,

����;Sn�1g = ��g

on the Sobolev space W p;k (
; Cln) and in particular when tr@
g = 0, we
have

��;Sn�1��g = ��g

adjoining this with result (2) we prove (3). �

Remark 2. On the space of functions with compact support, the action of
the spherical Dirac operator from the right and from the left on ��;Sn�1 is
irrelevant.

Corollary 6. If f is a smooth Cli¤ord valued function which has a compact
support over 
, then ��;Sn�1 and �� commute at f and furthermore, their
product at such a function is the Cli¤ord conjugate �� of ��.

Proposition 13. In the Sobolev space W 2;1 (
; Cln),

f 2 ker �� ) ��;Sn�1f 2 ker ��
That is

��;Sn�1 :W
2;1 (
) \ ker �� !W 2;1 (
) \ ker ��:
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Proof. Let f 2 W 2;1 (
; Cln) \ ker ��. Then ��;Sn�1f 2 W 2;1 (
; Cln) as
��;Sn�1 preserves regularity, and ��f = 0. But from the relation

�� = ����;Sn�1

we get
����;Sn�1f = 0

which is the required result. From this result, one can see that the ��
operator preserves monogenicity or hypercomplex regularity of functions in
the sense :

��;Sn�1 : B
2
� (
; Cln)! B2� (
; Cln)

where
B
2
� (
; Cln) = L2 (
; Cln) \ ker �� and B2� (
; Cln)

is the Bergman space mentioned above. �

Proposition 14. Let

�0;j := e0ej det

�
!0 !j
@
@!0

@
@!j

�
; j = 1; :::; n:

If ��;Sn�1 �xes f 2 L2 (
; Cln), then f satis�es the equation

f =

0@X
0<j

�0;j + �

1AT
f:

Proof. First we rewrite the conjugate of the spherical Dirac operator �� as

�� = 2

0BBB@X
0<j

e0ej

�
!0

@

@!j
� !j

@

@!0

�
| {z }

�0;j

+ �

1CCCA� ��:
Then

��;Sn�1f = f

implies
��T
f = f:

Using the expression for �� in terms of �� given above we get the desired
result. �

Remark 3. From the above result and the orthogonal decomposition of the
Hilbert space, we can see that the spherical ��;Sn�1 has the mapping property:

��;Sn�1 : ��

�
W 2;1
0 (
; Cln)

�
! ��

�
W 2;1
0 (
; Cln)

�
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pictorially, we describe the above mapping properties as(for further stud-
ies, see [4],[5]):

L2 (
; Cln) =

B2� (
; Cln)| {z }
#

� ��
�
W 2;1
0 (
; Cln)

�
| {z }

#

B
2
� (
; Cln)� ��

�
W 2;1
0 (
; Cln)

�
9>>=>>; #: ��;Sn�1

Proposition 15. Let p 2 (1;1) ; k 2 Z[ f0g and f 2W p;k (
; Cln). Then

��;Sn�1��;Sn�1f + ��F @
T
f = f:

Corollary 7. By taking the complexi�ed Cli¤ord conjugate of the above
equation we get

��;Sn�1��;Sn�1f + ��F@
T
f = f

Corollary 8. The ��;Sn operator is left invertible on the space ��
�
W 2;1
0 (
; Cln)

�
with left inverse of ��;Sn�1.

Proof. Let f 2 ��
�
W 2;1
0 (
; Cln)

�
. Then there exists a function g 2W 2;1

0 (
; Cln)

such that f = ��g with tr@
g = 0.
From the Borel-Pompeiu formula, we have

g = T
��g = T
f

and this implies
tr@
T
f = 0

and therefore,
F@
T
f = F@
 (tr@
T
f) = 0

which yields the result. �

Remark 4. A similar argument yields that ��;Sn�1 is right invertible on

��

�
W 2;1
0 (
; Cln)

�
with right inverse of ��;Sn�1.

Denote by � the overlap of the function spaces ��
�
W 2;1
0 (
; Cln)

�
\

��

�
W 2;1
0 (
; Cln)

�
.

Lemma 1. � is non empty.

Proof. Here, to show that the set � is non-empty, we need to consider the

Sobolev space
�
����

� �
W 2;2
0 (
; Cln)

�
where �� is the Cli¤ord conjugate of

the spherical Dirac operator of order �. Let f 2 ����

�
W 2;2
0 (
; Cln)

�
.

Then 9g 2 ��
�
W 2;2
0 (
; Cln)

�
and h 2 ��

�
W 2;2
0 (
; Cln)

�
3 f = ��g =

��h.
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That is f 2 �. In fact the argument shows that ����
�
W 2;2
0 (
; Cln)

�
�

�: �

Proposition 16. On the space �, ��;Sn�1 is invertible with inverse of
��;Sn�1 :

When we consider global functions over the sphere we may have better
results on invertibility of ��;Sn�1 .

Proposition 17. On the space C10
�
Sn�1; Cln

�
, we have

��;Sn�1��;Sn�1 = ��;Sn�1��;Sn�1

From denseness arguments, and boundedness of the ��;Sn�1 on L
2 (
; Cln) ;

the above result can be done over a larger domain as:

Corollary 9. On the space L2
�
Sn�1; Cln

�
, we have

��;Sn�1��;Sn�1 = ��;Sn�1��;Sn�1

With respect to the Cli¤ord valued inner product given by (3.1) on the
Hilbert space L2 (
; Cln),
we take �T
 as the adjoint T �
 of T
 and ��� as ���; adjoint of ��.

Therefore for f; g 2W 2;k
0 (
; Cln), we have

h��f; gi
 =

Z



��fgd


=

Z



��fgd


= �
Z



f��gd


= �


f;��g

�



and

hT
f; gi
 =

Z



T
fgd
�

=

Z



T
fgd
�

=

Z



�Z


	n� (!; �) f(!)d
!

�
g (�) d
�
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=

Z

�


	n� (!; �) f(!)g (�) d
!d
�

= �
Z



f (!) d
!

Z



	n� (!; �) g (�) d
�

= �
Z



f (!)
�
T
g (�) d
�

�
d
!

= �


f; T
g

�


:

Lemma 2. ��� = T
��

Proof. 

��;Sn�1f; g

�
=



��T
f; g

�
= �hT
f;��gi
=



f; T
��g

�
=

D
f; ���;Sn�1

E
From this we can see that the adjoint ���;Sn�1of the ��;Sn�1 operator is

T
�� �

Proposition 18. On W 2;k
0 (
; Cln),k = 0; 1; 2; :::, we have

���;Sn�1��;Sn�1 = ISn�1 :

Proof. For f 2W 2;k
0 (
; Cln),

���;Sn�1��;Sn�1f = T
����;Sn�1f

= T
����T
f

= T
����T
f

= I
I
f = f:

This is because for a function f 2W 2;k (
; Cln) whose trace is zero over the
boundary, �� is both the right and left inverse of the T
 operator. �
Corollary 10. On the Hilbert space L2 (
; Cln),

���;Sn�1 = ��;Sn�1 :

From the above corollary we get that for f; g 2 L2 (
; Cln),



��;Sn�1f; ��;Sn�1g

�



=
D
f; ���;Sn�1��;Sn�1g

E



= hf; gi
 :
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By taking f = g, we have an isometry property for the ��;Sn�1 operator
over L2 (
; Cln) :

Proposition 19. k ��;Sn�1f k=k f k for f 2W 2;0 (
; Cln), i.e., ��;Sn�1 is
norm preserving over the Hilbert space.

Proof. For f 2W 2;0 (
; Cln),

k ��;Sn�1f k=
�

��;Sn�1f; ��;Sn�1f

�



�
0

=
hD
f; ���;Sn�1��;Sn�1f

E



i
0

= [hf; fi
]0 =k f k
�

In the following proposition we identify functions in the Hilbert space
which are �xed by the spherical ��;Sn�1 operator?

Proposition 20. (Fixed Points of ��;Sn�1) Let f 2 L2 (
; Cln). If
��;Sn�1f = f

then

f =

0@X
0<j

e0ej

�
!0

@

@!j
� !j

@

@!0

�
+ �

1AT
f:

Proof. First

�� = �! + �

= �
X
i<j

eij

�
!i

@

@!j
� !j

@

@!i

�
+ �

Then

�� = �2

0@X
0<j

e0ej

�
!0

@

@!j
� !j

@

@!0

�
+ �

1A� ��:
This gives us

��;Sn�1f =

0@�2
0@X
0<j

e0ej

�
!0

@

@!j
� !j

@

@!0

�
+ �

1A� ��
1AT
f

simplifying this and equating the result to f , we get the result. �

Remark 5. The ��;Sn�1 operator is a bounded, and isometric operator
which preserves regularity over Sobolev spaces and yet di¤erent from the
Identity operator .
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Remark 6. For a global function g 2 L2
�
Sn�1; Cln

�
, or in W 2;k

0 (
; Cln),
the equation

��;Sn�1f = g

has a solution in the respective space given by

f = ���;Sn�1g

where ���;Sn�1 is the adjoint of the ��;Sn�1 operator.

5. The Spherical Cli¤ord Beltrami Equation

For measurable functions f; q : 
 � C with k q k< 1, the classical Beltrami
equation given by

fz � qfz = 0
has been studied by many authors. The equation has also its version in
higher dimensions in the real Cli¤ord algebra Cln (R) or in the complexi�ed
Cli¤ord algebra Cln (C) or over domain manifolds in Cn.

In [8], the authors study the Beltrami equation over Cn+1 via real, com-
pact, (n+1)�manifolds in Cn+1. This is possible by introducing an intrinsic
Dirac operator speci�c to each domain manifold.

In this paper we extend our study of the �-operator over spherical domains
and once again consider the Beltrami equation here.

De�nition 6. Let 
 be a smooth domain in Sn�1 and let q : 
! Cln be a
measurable function.
Then for f 2 W 2;1 (
; Cln), the spherical Cli¤ord Beltrami equation is

given by

(5.1) ��f � q��f = 0

In order to study this Beltrami equation, lets consider an integral equation
given by

f = T
h+ �

where � is in the ker �� (
) and h = ��f .Then applying �� on both sides
of the integral equation we get

��f = ��T
h+ ��� = ��;Sn�1h+ e�
with e� = ��� and solving for h; we get
(5.2) h = ��f = q

�
��;Sn�1h+ e��

We now consider the two equations (5.1) and (5.2) :The solvability of one
is the solvability of the other.
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To study the solvability of (5.2), we consider the mapping :

h 7! q��;Sn�1h, with k q k< 1

which is a contraction map and hence it has a �xed point which is going
to be a solution to (5.2). Therefore the Beltrami equation has a solution.
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